LOD

Collaborative Project

LODZ2 - Creating Knowledge out of Interlinked Data

Project Number: 257943 Start Date of Project: 01/09/2010 Duration: 48 months

Deliverable 2.1.4
150 Billion Triple dataset hosted on the LOD2

Knowledge Store Cluster

Dissemination Level Public

Due Date of Deliverable Month 27,30/11/2012

Actual Submission Date Month 31, 18/03/2013

Work Package WP 2, Storing and Querying Very Large Knowledge bases

Task T2.1.4

Type Software

Approval Status Approved

Version 1.0

Number of Pages 14

Filename LOD2_D2.1.4_LOD_.C10ud_Hosted_On_The_LODZ_Knowledge_Stor
e_Cluster_150B_Triples

Abstract:

This report gives an overview of the Virtuoso Column Store Edition Cluster BSBM
benchmarking testing against 50 and 150 billion triple generated datasets, to prove the ability
to scale these size datasets with multiple concurrent user workloads.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may
be made of the information contained therein. The information in this document is provided “as is” without guarantee or
warranty of any kind, express or implied, including but not limited to the fitness of the information for a particular purpose. The
user thereof uses the information at his/ her sole risk and liability.

B ) —
SEVENTH FRAMEWORK * 5 K
PROGRAMME

Project co-funded by the European Commission within the Seventh Framework Programme (2007 - 2013)



LOD D2.1.4-v.1.0

History

Version Date Reason Revised by

Draft of 150B triples LOD Cloud hosted Hugh Williams
raft o riples oud hoste p——

01 25/01/2013 on the LOD2 Knowledge Store Cluster Orri Erling
Pham Duc

0.2 25/02/2013 Peer Review comments Renaud Delbru

0.5 26/02/2013 | Approval comments Peter Boncz
Hugh Williams

0.9 04/03/2013 Final revisions Pham Duc
Orri Erling

1.0 18/03/2013 Final Review Renaud Delbru

Author List

Organisation | Name Contact Information

OGL Hugh Williams hwilliams@openlinksw.com

OGL Orri Erling oerling@openlinksw.com

CWI Pham Duc P.Minh.Duc@cwi.nl

CWI Peter Boncz P.Boncz@cwi.nl




o o
°ge
®,

%,

LOD D2.1.4-v.1.0

Table of Contents

EX@CULIVE SUIMIMATY wuvvurieismsarsessmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssnss 4
1 0 o 72 U ) ¢ 5
1.1  Virtuoso Column Store (V7) Cluster Edition ........cccumminmmismmsmsmsmsssmssmssmsssssssssssssssssssssssss 5
1.2 BSBM benchmark results t0 date......cccciiiirimiimiiiemmisimsissssmssssssssssssssssssssssssssssssssssssmsssssssssssensssssssss 5
Cluster ConfigUIationN.. .o umimsmssssssmssssssssssssssssssssssss s ssssssssssssssassssssassssassssssassesssassnsassssnsassnsnsass 6
) 7= Y 7= U0 0 Y- X 6
NoOtes 0N the Bl WOTKIOAMA....cuuciursrrrssmismmrsssssasssssssssssssssssssssssssssssssssssssssssssssssassssssssssassssssssasssssssasssssasess 7
BSBM BeNChMATK RESUILS ..covieeriresrssssrssssssassssassssssssssssssssssssssssssssssssssssssssssssssssassssssssssassssssssasssssssnsssnsnssns 8
1.3 5 I S o 9
1.4 EXPIOT@ US@ CASE c.uivuruismssssmssssmsssssssmssssmssssssssssssssssssssssssssssssssssssssssssssesss sesssssssssesss s sassssssssssnssssnnssssnnssnnnsss 11
00 4 U 1) 1 o) o T 13
2] =) =) 1 1 14



® o
°ge
®,

%,

LOD D2.1.4-v.1.0

Executive Summary

This report gives an overview of the Virtuoso Column Store Edition Cluster (V7) Berlin SPARQL
Benchmark (BSBM) testing against 50 and 150 billion triple generated datasets, to prove the ability to
scale to these size datasets with multiple concurrent user workloads.

The Berlin SPARQL Benchmark (BSBM) was chosen to perform this evaluation, as unlike in previous
years the LOD Cloud does not contain 150 billion triples to enable its use. The evaluation was
performed on the CWI Scilens hardware cluster in Amsterdam.

We note that this experiment marks a 750x increase in reported data size on the BSBM benchmark. It
is also the first time that BSBM was run on a cluster system. Further this is the first time that also
results on the Business Intelligence workload of BSBM could be reported.

All this marks a strong increase in the state-of-the-art of RDF data management. Important parts of
this innovation were the fruit of LOD2 WP2 activities.
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Motivation

1.1 Virtuoso Column Store (V7) Cluster Edition

The original Virtuoso Server was developed as a row-wise transactional orientated RDBMS including
built-in RDF Data storage , with clustered capabilities for scale out across commodity level hardware
enabling the hosting of large RDF datasets in particular. As the RDF Datasets in the LOD cloud
generally have grown in size, the need to host these datasets with increasing scale and performance
has tested the row-wise RDF implementation to it limits.

Thus, with a view to trying to get RDF data storage and querying on a par with the relational model, as
part of the LOD2 project in collaboration with our partner CWI, the compressed column-wise storage
and vectorized execution model has been implemented from the BI (business intelligence) world,
which is more suited to typical RDF workloads, and enables significant improvements in performance
and reduced data storage size.

1.2 BSBM benchmark results to date

The BSBM (Berlin SPARQL BenchMark) was developed in 2008 as one of the first open source and
publicly available benchmarks for RDF data stores. BSBM has been improved over this time and is
current on release 3.1 which includes both Explore and Business Intelligence use case query mixes, the
latter stress-testing the SPARQL1.1 group-by and aggregation functionality, demonstrating the use of
SPARQL in complex analytical queries.

Results:

The following BSBM results have been published the last being in 2011, all of which include results for
the Virtuoso version available at that time (all but the last one being for Virtuoso row store) and can be
used for comparison with the results produced in the deliverable:

* BSBM version 1 (July 2008) - with 100 million triple datasets
¢ BSBM version 2 (Nov 2009) - with 200 million triple datasets
* BSBM version 3 (Feb 2011) - with 200 million triple datasets

The above results are all for the Explore use case query mix only. Apart from these ‘official’ BSBM
results, in published literature some BSBM results have appeared, though none of these complete BI
runs or Explore runs on any larger size.

The results of this deliverable benchmarking the BSBM Explore and Bl use case query mixes against 50
and 150 billion triple datasets on a clustered server architecture represent a major step (750 times
more data) in the evolution of this benchmark.
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Cluster Configuration

RDF systems strongly benefit from having the working set of the data in RAM. As such, the ideal cluster
architecture for RDF systems uses cluster nodes with relatively large memories. For this reason, we
selected the CWI SCILENS (www.scilens.org) cluster for these experiments. This cluster is designed for
high I/0 bandwidth, and consists of multiple layers of machines. In order to get large amounts of RAM,
we used only the “bricks” layer, which contains its most powerful machines.

Virtuoso V7 Column Store Cluster Edition was set up on 8 Linux machines. Each machine has two CPUs
(8 cores and hyperthreading, running at 2GHz) of the Sandy Bridge architecture, coupled with 256GB
RAM and three magnetic hard drives (SATA) in RAID 0 (180/MB/s sequential throughput). The
machines were connected by Mellanox MCX353A-QCBT ConnectX3 VPI HCA card (QDR IB 40Gb/s and
10GigE) through an InfiniScale IV QDR InfiniBand Switch (Mellanox MIS5025Q). The cluster setups
have 2 processes per machine, 1 for each CPU. (A CPU here has its own memory controller which
makes it a NUMA node). CPU affinity is set so that each server process has one core dedicated to the
cluster traffic reading thread (i.e. dedicated to network communication) and the other cores of the
NUMA node are shared by the remaining threads. The reason for this set-up is that communication
tasks should be handled with high-priority, because failure to handle messages delays all threads. It
was verified experimentally that this configuration works best.

These experiments have been conducted over many months, in parallel to the Virtuoso V7 Column Stre
Cluster Edition software getting ready for release. Large part of the effort spent was in resolving
problems and tuning the software.

Data Load

The original BSBM data generator was a single-threaded program. Generating 150B triples with it
would have taken weeks. As part of this project, we modified the data generator to be able to generate
only a subset of the dataset. By executing the BSBM data generator in parallel on different machines,
each generating a different part of the dataset, BSBM data generation now has become scalable.

In these experiments we generated 1000 data files with the BSBM data generator. Separate file
generation is done using the -nof option in the BSBM driver. These files are then distributed to each
machine according to the modulo of 8 (i.e., the number of machine) so that files number 1,9, 17 ... go
to machine 1, file number 2, 10, 18,... go to machine 2, and so on. This striping of data of the data
across the nodes ensures a uniform load, such that all nodes get an equal amount of similar data.

# of Total file Total file size Total data size | Database size Loading
triples size (in .ttl (with gzip of each (total) Time

format) compression) machine (in

gzip)

50 billion | 2.8 TB 240 GB 30 GB 1.8 TB 10h 45s
triples
150 8.5TB 728 GB 91 GB 5.6 TB n/a
billion
triples
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Each machine loaded its local set of files (125 files), using the standard parallel bulk-load mechanism
of Virtuoso. This means that multiple files are read at the same time by the multiple cores of each CPU.
The best performance was obtained with 7 loading threads per server process. Hence, with two server
processes per machine and 8 machines, 112 files were being read at the same time.

Also notice that in a cluster architecture there is a constant need for communication during loading,
since all new URIs and literal must be encoded identically across the cluster; hence shared dictionaries
must be accessed. Thus, a single loader thread counts for about 250% CPU across the cluster.

The load was non-transactional and with no logging, to maximize performance.
Aggregate load rates of up to 2.5M quads per second were observed for periods of up to 30 minutes.

The total loading time for the dataset of 50 billion triples is about 10h 45 minutes, which makes the
average loading speed 1.3M triples per second.

The largest load (150G quads) was slowed down by one machine showing markedly lower disk write
throughput than the others. On the slowest machine iostat showed a continuous disk activity of about
700 device transactions per second, writing anything from 1 to 3 MB of data per second. On the other
machines, disks were mostly idle with occasional flushing of database buffers to disk producing up to
2000 device transactions per second and 100MB/s write throughput. Since data is evenly divided and
2 of 16 processes were not runnable because the OS had too much buffered disk writes, this could stop
the whole cluster for up to several minutes at a stretch. Our theory is that these problems were being
caused by hardware malfunction.

To complete the 150B load, we interrupted the stalling server processes, moved the data directories to
different drives, and resumed the loading again. The need for manual intervention, and the prior
period of very slow progress makes it hard to calculate the total time it took for the 150B load. We may
re-run the loading for 150 billion triples in the near future and report it when publishing the
benchmark results.

Notes on the BI Workload

For running the benchmark, we used the Business Intelligence Benchmark [BIBM], an updated version
of the original BSBM benchmark [BSBM] which provides several modifications in the test driver and
the data generator. These changes have been adopted in the official V3.1 BSBM benchmark definition.
The changes are as follows:

- The test driver reports more and more detailed metrics including "power"” and "throughput"
scores.

- The test driver has a drill down mode that starts at a broad product category, and then zooms in
subsequent queries into smaller categories. Previously, the product category query parameter was
picked randomly for each query; if this was a broad category, the query would be very slow; if it is
a very specific category it would run very fast. This made it hard to compare individual query runs;
and also introduced large variation in the overall result metric. The drill down mode makes it more
stable and also tests a query pattern (drill down) that is common in practice.

- One query (i.e., BI Q6) was removed from the Explorer use case that returned a quadratic result.
This query would become very expensive in the 1 billion triple and larger tests, so its performance
would dominate the result.

- The text data in the generated strings is more realistic. This means you can do (more) sensible
keyword queries on it.

- The new generator was adapted to enable parallel data generation. Specifically, one can let it
generate a subset of the data files. By starting multiple data generators on multiple machines one
can thus hand-parallelize data generation. This is quite handy for the larger-size tests, which
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literally otherwise takes weeks.

As the original BSBM benchmark, the test driver can run with single-user run or multi-user run.

- Single user run: This simulates the case that one user executes the query mix against the system
under test.

- Multi-user run: This simulates the case that multiple users concurrently execute query mixes
against the system under test.

All BSBM BI runs were with minimal disk 10. No specific warm-up was used and the single user run
was run immediately following a cold start of the multiuser run. The working set of BSBM BI is
approximately 3 bytes per quad in the database. The space consumption without literals and URI
strings is 8 bytes with Virtuoso column store default settings.

For a single user run, typical CPU utilization was around 190 of 256 core threads busy. For a
multiuser run, all core threads were typically busy. Hence we see that the 4 user run takes roughly 3
times the real time of the single user run.

BSBM Benchmark Results

The following terms will be used in the tables representing the benchmark results.
* Elapsed runtime (seconds): the total runtime of all the queries excluding the time for warm-up
runs.
¢ Throughput: the number of executed queries per hour. This value is computed with considering
the scale factor as in TPC-H. Specifically, the throughput is calculated using the following function.
Throughput = (Total # of executed queries) * (3600 / ElapsedTime) * scaleFactor.

Here, the scale factor for the 50 billion triples dataset and 150 billion triples dataset is ~ 500 and
1500, respectively.

* Timeshare(%): The percentage of the query runtime in total runtime of all queries.
Timeshare(query q) = (Total runtime of q) / (Total runtime of all queries) * 100
(It also can be calculated as Timeshare(query q) = 100*aqget*runsPerQuery/totalRuntime, where

aqet is the average query execution time for a query, runsPerQuery is the number of runs of that
query)

* AQET: average query execution time (seconds): The average execution time of each query
computed by the total runtime of that query and the number of executions.

AQET(q) = (Total runtime of q) / (number of executions of q)
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1.3 Bl use case

Note: No warm-up for both single client and multiple clients while running Bl use case

50B triples 150B triples

Single-client Multi-client (4) Single-client Multi-client (4)
runtime 3733sec 9066sec 12649sec 29991sec
Tput 12052 19851 10671 18003

AQET | Timeshare | AQET Timeshare | AQET Timeshare | AQET Timeshare
Q1 622.80 | (16.7%) | 1085.82 | (12.8%) |914.39 | (7.2%) 1591.37 | (5.6%)
Q2 189.85 | (5.1%) 30.18 | (0.4%) 196.01 | (1.6%) 507.02 | (1.8%)
Q3 337.64 | (9.0%) 2574.65 | (30.3%) | 942.97 | (7.5%) 8447.73 | (30.0%)
Q4 18.13 | (2.4% 6.13 (0.4%) 183.00 | (7.2%) 125.71 | (2.2%)
Q5 187.60 | (25.1%) | 319.75s | (18.8%) | 830.26 | (32.8%) 1342.08 | (23.8%)
Q6 47.64 | (1.3%) 34.67 | (0.4%) 24.45 | (0.2%) 191.42 | (0.7%)
Q7 36.96 | (5.9%) 39.37 | (2.8%) 58.63 | (2.8%) 94.82 | (2.0%)
Q8 256.93 | (34.4%) |[583.20 | (34.3%) | 1030.73 | (40.7%) 1920.03 | (34.0%)
Avg 212 584 522 1777s

Some results seem noisy, for instance Q2@50B, Q4@50B, Q4@150B are significantly cheaper in the
multi-client-setup. Given the fact that the benchmark was run in drill-down mode, this is unexpected.
It could be countered by performing more runs, but, this would lead to very large run-times as the BI
workload has many long-running queries.

In the following, we discuss the above performance results over several specific queries Q2 and Q3.

Query 2 in the BI use case:
SELECT ?otherProduct ?sameFeatures
{
?otherProduct a bsbm:Product .
FILTER (?otherProduct != $%$Product%)
{
SELECT ?otherProduct (count (?otherFeature) As ?sameFeatures)
{
$Product% bsbm:productFeature ?feature .
?otherProduct bsbm:productFeature ?otherFeature .
FILTER (?feature=?otherFeature)
}

Group By ?otherProduct
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Order By desc (?sameFeatures) ?otherProduct

Limit 10

BI Q2 is a lookup for the products with the most features in common with a given product. The
parameter choices (i.e., %Product%) produce a large variation in run times. Hence the percentage of
the query’s timeshare varies according to the repetitions of this query’s execution. For the case of 4-
client, this query is executed for 4 times which can be the reason for the difference timeshare between
single-client and 4-client of this query.

Query 3 in the BI use case:
Select ?product (xsd:float (?monthCount)/?monthBeforeCount As ?ratio)
{
{ Select ?product (count(?review) As ?monthCount)
{
?review bsbm:reviewFor ?product .
?review dc:date ?date .

Filter (?date >= "%ConsecutiveMonth 1%"""<http://www.w3.0rg/2001/XMLSchema#date> && ?date <
"%ConsecutiveMonth 2%"""<http://www.w3.0rg/2001/XMLSchema#date>)

}
Group By ?product
JE
Select ?product (count(?review) As ?monthBeforeCount)
{
?review bsbm:reviewFor ?product .
?review dc:date ?date .

Filter (?date >= "%ConsecutiveMonth 0%"""<http://www.w3.0rg/2001/XMLSchema#date> && ?date <
"%ConsecutiveMonth 1%"""<http://www.w3.0rg/2001/XMLSchema#date>) #

}
Group By ?product

Having (count (?review)>0)

}
Order By desc(xsd:float (?monthCount) / ?monthBeforeCount) ?product

Limit 10

The query generates a large intermediate result: all the products and their review count on the latter
of the two months. This takes about 16GB (in case of 150 billion triples), which causes this to be
handled in the buffer pool, i.e. the data does not all have to be in memory. With multiple users
connected to the same server process, there is a likelihood of multiple large intermediate results
having to be stored at the same time. This causes the results to revert earlier to a representation that
can overflow to disk. Supposing 3 concurrent instances of Q3 on the same server process, the buffer
pool of approximately 80G has approximately 48G taken by these intermediate results. This causes
pages needed by the query to be paged out, leading to disk access later in the query. Thus the effect of
many instances of Q3 on the same server at the same time decreases the throughput more than
linearly. This is the reason for the difference in timeshare percentage between the single-user and
multi-user runs.

The further problem in this query is that the large aggregation on count is on the end result, which re-
aggregates the aggregates produced by different worker threads. This re-aggregation is due to the
large amount of groups quite costly; therefore it dominates the execution time: the query does not
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parallelize well. A better plan would hash-split the aggregates early, such that re-aggregation is not
required.

1.4 Explore use case

Note:
+ Single client: 1000 warm-ups and 100 runs
+ 4 clients: 8 warm-ups

50B triples 150B triples

Single-client Multi-client (4) Single-client Multi-client (4)
runtime 931sec (100 runs) | 15sec (1run) 1894sec (100 runs) | 29sec (1 run)
Tput 4832691 11820943 7126307 18386227

AQET | Timeshare | AQET Timeshare | AQET Timeshare | AQET Timeshare
Q1 0.066 | (0.7%) 0.415 | (3.1%) 0.113 | (0.6%) 0.093 | (0.4%)
Q2 0.045 | (3.0%) 0.041 | (1.8%) 0.066 | (2.1%) 0.086 | (2.3%)
Q3 0.112 | (1.2%) 0.091 | (0.7%) 0.111 | (0.6%) 0.116 | (0.5%)
Q4 0.156 | (1.7%) 0.102 | (0.8%) 0.308 | (1.6%) 0.230 | (1.0%)
Q5 3.748 | (80.8%) |6.190 | (91.4%) |[8.052 |(85.2%) |9.655 | (85.4%)
Q7 0.155 | (6.7%) 0.043 | (1.3%) 0.258 | (5.5%) 0.360 | (6.4%)
Q8 0.100 | (2.1%) 0.021 | (0.3%) 0.188 | (2.0%) 0.186 | (1.6%)
Q9 0.011 | (0.5%) 0.010 | (0.3%) 0.011 | (0.2%) 0.011 | (0.2%
Q10 0.147 | (3.2%) 0.020 | (0.3%) 0.201 | (2.1%) 0.242 | (2.1%)
Q11 0.005 | (0.1%) 0.004 | (0.0%) 0.006 | (0.0%) 0.006 | (0.0%)
Q12 0.014 | (0.1%) 0.019 | (0.1%) 0.013 | (0.1%) 0.010 | (0.0%)
Avg
(without
Q5) 0.08s 0.08s 0.13s 0.13s

We notice that these 4-client results seem more noisy than the single-client results and therefore it
may be advisable in future benchmarking to also use multiple runs for multi-client tests.

What is striking in the Explore results is that Q5 dominates execution time.

Query 5 in the Explore use case:
SELECT DISTINCT ?product ?productLabel
WHERE {

?product rdfs:label ?productLabel .

FILTER (%ProductXYz% != ?product)
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$ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

$ProductXYZ% bsbm:productPropertyNumericl ?origPropertyl .

?product bsbm:productPropertyNumericl ?simPropertyl .

FILTER (?simPropertyl < (?origPropertyl + 120) && ?simPropertyl > (2origPropertyl - 120))

$ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .

?product bsbm:productPropertyNumeric2 ?simProperty2 .

FILTER (?simProperty2 < (?origProperty2 + 170) && ?simProperty2 > (2origProperty2 - 170))
}
ORDER BY ?productLabel

LIMIT 5

Q5 asks for the 5 most similar products to one given product, based on two numeric product
properties (using range selections). It is notable that such range selections might not be computable
with the help of indexes; and/or the boundaries of both 120 and 170 below and above may lead to
many products being considered ‘similar’. Given the type of query, it is not surprising to see that Q5 is
significantly more expensive than all other queries in the Explore use case (the other queries are
lookups that are index computable - this also means that execution time on them is low regardless
scale factor).

In the explore use case, most of the queries have the constant running time regardless of the
scalefactor, thus computing the throughput by multiplying the gph (queries per hour) with the
scalefactor may show a significant increase between the cases of 50-billion and 150-billion triples.

In this case, instead of the throughput metric, it is better to use another metric, namely qmph (# of
query mixes per hour).

50 Billion triples
Single Client Multiple Clients (4 clients)
qmph 4253.157 2837.285
150 Billion triples
Single Client Multiple Clients (4 clients)
qmph 2090.574 1471.032
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Conclusion

The present experiments demonstrate that complex queries each touching a large fraction of a data set
of 150 billion triples can be run in near interactive time on a cluster of commodity servers. The
platform utilization is good, i.e. a single query uses about 2/3 of available resources, in this case a total
of 256 cores (hyperthreaded cores). Execution times are multiplied by a factor of three when going
from a single client to 4 concurrent clients, which is consistent with a good degree of parallelism
within a single query, a necessary prerequisite for complex analytic workloads.

The queries themselves consist almost entirely of cross partition joins, thus we see that scalability
does not result from an "embarrassingly parallel” workload, i.e. one where each partition can complete
with no or minimal interaction with other partitions.

We also see a linear increase in execution times when tripling the data size from 50 billion to 150
billion triples. The queries are generally in the order of O (n * log (n)), where n is the count of triples.
The log component comes from the fact of using tree indices where access times are in principle
logarithmic to index size. However the log element is almost not felt in the results due to exploitation
of vectoring for amortizing index access cost.

The execution is not significantly bound by interconnect, as we observe aggregate throughputs of
about 2GB/s on the 8 node QDR InfiniBand network, whose throughput in a n:n messaging pattern is
several times higher. Latency is also not seen to cut on CPU utilization, as the CPU percent is high and
execution has minimal synchronous barriers.

Having established this, several areas of potential improvement remain. Some queries produce
intermediate results that are all passed via a central location when this is not in fact necessary (Q3 BI.
Load on aggregation can be partitioned better by using the GROUP BY key as partitioning key. All the
joining in the benchmark, which consists almost only of JOIN’s and GROUP BY's was done with index
lookups. Use of hash joins in many places could improve both throughput and locality, cutting down
on network traffic.

Memory efficiency of the query execution may be improved so as to allow more parallel queries to run
at high vector size, which is a central component of performance. Message compression may also

reduce blocking on message passing, yielding smoother execution with less forced task switches.

In any case the present results demonstrate that complex query loads on a schema-less data model are
feasible at scale.
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