

Collaborative Project

LOD2 – Creating Knowledge out of Interlinked Data

Deliverable 2.1.5

500 Billion Triple Dataset Hosted on the LOD2

Knowledge Store Cluster

Dissemination Level Public

Due Date of Deliverable Month 39, 30/11/2013

Actual Submission Date Month 48, 18/08/2014

Work Package WP 2, Storing and Querying Very Large Knowledge bases

Task T2.1.5

Type Software

Approval Status Approved

Version 1.0

Number of Pages 51

Filename
LOD2_D2.1.5_LOD_Cloud_Hosted_On_The_LOD2_Knowledge_S

tore_Cluster_500B_Triples

Abstract: This report gives an overview of the Virtuoso Column Store Edition Cluster BSBM

benchmarking testing against 500 billion triple generated datasets, to prove the ability to scale these

size datasets with multiple concurrent user workloads.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may be

made of the information contained therein. The information in this document is provided “as is” without guarantee or warranty of any

kind, express or implied, including but not limited to the fitness of the information for a particular purpose. The user thereof uses the

information at his/ her sole risk and liability.

Project co-funded by the European Commission within the Seventh Framework Programme (2007 – 2013)

Project Number: 257943 Start Date of Project: 01/09/2010 Duration: 48 months

 D2.1.5 – v. 1.0

Page 2

History

Version Date Reason Revised by

0.1 10/08/2014
Draft of 500B triples LOD Cloud hosted on

the LOD2 Knowledge Store Cluster
Hugh Williams

0.2 28/08/2014
Draft of 500B triples LOD Cloud hosted on

the LOD2 Knowledge Store Cluster
Orri Erling

0.9 29/08/2014

Final Draft of 500B triples LOD Cloud

hosted on the LOD2 Knowledge Store

Cluster

Orri Erling, Hugh

Williams

1.0 29/08/2014 Final Review and Editing Peter Boncz

Author List

Organisation Name Contact Information

OGL Hugh Williams hwilliams@openlinksw.com

OGL Orri Erling oerling@openlinksw.com

OGL Ivan Mikhailov imikhailov@openlinksw.com

CWI Peter Boncz P.Boncz@cwi.nl

CWI Minh Pham Duc P.Minh.Duc@cwi.nl

file:///C:/Users/soeren/Documents/Forschung/Projects/LOD2/auer@informatik.uni-leipzig.de
mailto:oerling@openlinksw.com
mailto:imikhailov@openlinksw.com
mailto:P.Boncz@cwi.nl
mailto:P.Minh.Duc@cwi.nl

 D2.1.5 – v. 1.0

Page 3

Table of Contents

Executive Summary ... 4

Introduction ... 5
BSBM benchmark results to date .. 5
Outline .. 6

Experiment Definition .. 7
Dataset .. 7
Cluster Partitioning ... 7
Terms .. 8

BSBM 500B Bulk Load ... 9

BSBM 500B Explore .. 10
Network Bottleneck .. 10
Platform Utilization .. 11
Query Plan Analysis .. 12
Execution Profiles.. 13

BSBM 500B Update + Update & Explore .. 15

BSBM 500B Business Intelligence ... 18
Query Plan Analysis .. 19
Platform Utilization .. 20
Execution Profiles.. 21

Conclusions .. 24

Appendix A – Query Plans ... 25

Appendix B – Virtuoso Configuration Files .. 46

References .. 51

 D2.1.5 – v. 1.0

Page 4

Executive Summary

This document continues the series of experiments in LOD2 around management of large RDF data. The

scale is now over 3 times larger than in the previous set of experiments, now totalling 500 billion triples.

The experiments are carried out at the Scilens cluster of CWI. We show the BSBM explore, update and

business intelligence workloads with extensive analysis of cluster performance dynamics and query

execution profiles.

We demonstrate radical advances in query optimization, using diverse hash based techniques that were not in

use in the previous experiments. These yield over an order of magnitude performance increase over the

previous 150 billion triple runs. For analytics, the data is over 3x larger, yet execution times are a fraction of

their former value.

Results of RDF query processing on both transactional (Explore & Update) and analytical (BI) workloads

have never before been demonstrated on this scale, marking absolute records and demonstrating through

the LOD2 EU project how RDF technology can be matured to match the level of sophistication and

performance of relational database technology.

In particular, during the project RDF technology has been enriched with the following state-of-the-art

database techniques:

 compressed columnar storage (better data locality, reduced RAM requirements)

 vectorized query execution (better I/O locality and reduced CPU query execution cost)

 hash-based joins and aggregations (instead of purely index-based processing)

 cost-based query optimization (proper operator ordering and use of hash vs index)

 cluster-based (MPP) data warehousing (full distribution of all SPARQL1.1 operators)

 distributed query optimization (partitioning locality, replication)

In spin-off work that will follow the LOD2 project, relational and RDF database technology will fully come

together by adopting automatic tabular data structures in RDF data management, i.e. the work that

automatically detects RDF structure regularity ("characteristic sets"). These expected advances are based on

joint research conducted in LOD2 by CWI and Openlink.

 D2.1.5 – v. 1.0

Page 5

Introduction
The original Virtuoso Server was developed as a row-wise transactional orientated RDBMS including built-

in RDF Data storage , with clustered capabilities for scale out across commodity level hardware enabling the

hosting of large RDF datasets in particular. As the RDF Datasets in the LOD cloud generally have grown in

size, the need to host these datasets with increasing scale and performance has tested the row-wise RDF

implementation to it limits.

Thus, with a view to trying to get RDF data storage and querying on a par with the relational model, as part

of the LOD2 project in collaboration with our partner CWI, we have introduced the following innovations:

 compressed columnar storage (better data locality, reduced RAM requirements)

 vectorized query execution (better I/O locality and reduced CPU query execution cost)

 hash-based joins and aggregations (instead of purely index-based processing)

 cost-based query optimization (proper operator ordering and use of hash vs index)

 cluster-based (MPP) data warehousing (full distribution of all SPARQL1.1 operators)

 distributed query optimization (partitioning locality, replication)

With respect to the previous iteration of this deliverable (i.e., D2.1.4) the Virtuoso v7 Cluster Edition was

enhanced with the techniques in boldface. In the course of 2014, Openlink changed its distribution model,

introducing a "fasttrack" Virtuoso release, which is essentially a beta release program.

We note that the rested V7 results are based exclusively on this fasttrack release. Over time it will be

incorporated in the official V7 product.

BSBM benchmark results to date
The BSBM (Berlin SPARQL BenchMark) was developed in 2008 as one of the first open source and

publicly available benchmarks for RDF data stores. BSBM has been improved over this time and is current

on release 3.1 which includes both Explore and Business Intelligence use case query mixes, the latter stress-

testing the SPARQL1.1 group-by and aggregation functionality, demonstrating the use of SPARQL in

complex analytical queries.

Results:

The following BSBM results have been published the last being in 2011, all of which include results for the

Virtuoso version available at that time (all but the last one being for Virtuoso row store) and can be used for

comparison with the results produced in the deliverable:

 BSBM version 1 (July 2008) –100 million triples, BSBM Explore

 BSBM version 2 (Nov 2009) – 200 million triples, BSBM Explore

 BSBM version 3 (Feb 2011) - 200 million triples, BSBM Explore + Explore&Update

 LOD2 D2.1.4 (January 2013) - 150 billion triples (!), BSBM Explore + BI.

The results presented in this deliverable (LOD2 D2.1.5) mark two advances:

 an increase by x3.3 in scale, i.e. datasets of 500 billion triples

 incorporation of the Update and Explore &Update workloads besides Explore + BI.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/ExploreUseCase/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BusinessIntelligenceUseCase/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/V1/results/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V5/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V6/index.html

 D2.1.5 – v. 1.0

Page 6

Outline
The remainder of this document is structured as follows:

 Experiment Definition: hardware platform, dataset and used terms

 BSBM Bulkload

 BSBM Explore workload

 BSBM Update + Update & Explore workloads

 BSBM BI workload

 Conclusion & Outlook

 D2.1.5 – v. 1.0

Page 7

Experiment Definition
RDF systems strongly benefit from having the working set of the data in RAM. As such, the ideal cluster

architecture for RDF systems uses cluster nodes with relatively large memories. For this reason, we selected

the CWI SCILENS (www.scilens.org) cluster for these experiments. This cluster is designed for high I/O

bandwidth, and consists of multiple layers of machines. In order to get large amounts of RAM, these

experiments were carried with the new "stones" ring.

Virtuoso V7 Column Store Cluster Edition (incorporating fasttrack innovations) was set up on 12 Linux

machines. The equipment consisted of 12 units with each dual Xeon E5 2650v2, 8 core, 16 threads per CPU,

2.6GHz, 256GB RAM, QDR InfiniBand. Each machine had 3 2TB magnetic disks in RAID 0 (striping -

180/MB/s sequential throughput). The machines were connected by Mellanox MCX353A-QCBT ConnectX3

VPI HCA card (QDR IB 40Gb/s and 10GigE) through an InfiniScale IV QDR InfiniBand Switch (Mellanox

MIS5025Q).

The cluster setups have 2 processes per machine, 1 for each CPU. (A CPU here has its own memory

controller which makes it a NUMA node). CPU affinity is set so that each server process has one core

dedicated to the cluster traffic reading thread (i.e. dedicated to network communication) and the other cores

of the NUMA node are shared by the remaining threads. The reason for this set-up is that communication

tasks should be handled with high-priority, because failure to handle messages delays all threads. It was

verified experimentally that this configuration works best.

The experiments with 150 billion triples in January 2013 (LOD2 D2.1.4) were made on a slightly different

set of machines (the "bricks" layer), 8 units of 2x Xeon E5 2650 (98 core, 16 thread, 2.0GHz) with QDR

InfiniBand and 3 2TB magnetic disks each. Thus the clock is 30% faster and there are 50% more machines

for a data size of 3.3 x the previous. We could not use the bricks layer again for lack of its availability for

experimentation plus the fact that the extra 4x256GB memory is needed during query execution.

Dataset
The experiments were carried out with a 500 billion triple Berlin SPARQL Benchmark (BSBM) dataset. The

scale factor was 500 * 2840000 products. The data generator was modified to drop the tens of millions of

distinct namespace prefixes it generated, which were found to substantially hamper a previous set of

experiments in January 2014, especially in bulkload.

The data generator was further modified to segment output into consecutive files and not to generate

different parts of the dataset in parallel. Previously, the data generator wrote multiple files in round-robin

fashion, thus effectively destroying locality. Therefore the generator now works as any other similar

program.

This modified BSBM data generator with modifications is available as a part of v7fasttrack feature/analytics

at github.com/v7fasttrack

Cluster Partitioning
The default Virtuoso index scheme was used, i.e. a single quads table with two covering indices on PSOG,

POSG and distinct projections of SP, OP, GS. The partitioning key is S or O, whichever is first in key order.

The partitioning is by hash of the key value, omitting the low 8 bits.

Thus every consecutive 256 values will be in the same partition. Integers between 0 and 100000 are an

exception. If such an integer occurs as O value and partitioning is on O, then the low 8 bits are not ignored.

Since there is an index on all O values and small integers are common it is important not to have 1 and 2 in

the same partition. This is enabled by the enable_small_int_part setting in the INI files.

The logical cluster consists of 24 processes spread over 12 machines. The processes are each assigned to a

NUMA node on the machine so that mostly local memory is used.

http://www.scilens.org/
http://www.github.com/

 D2.1.5 – v. 1.0

Page 8

Each process has 16 partition slices, one per hardware thread. The entire cluster thus consists of 384

partition slices. The server configuration files are in the appendix.

Each process has an independent HTTP listener and SPARQL end point.

Terms
The following terms will be used in the tables representing the benchmark results.

 Elapsed runtime (seconds): the total runtime of all the queries excluding the time for warm-up runs.

 Throughput: the number of executed queries per hour. This value is computed with considering the

scale factor as in TPC-H. Specifically, the throughput is calculated using the following function.

Throughput = (Total # of executed queries) * (3600 / ElapsedTime) * scaleFactor.

Here, the scale factor for the 500 billion triples dataset is 5000.

 Timeshare(%): The percentage of the query runtime in total runtime of all queries.

Timeshare(query q) = (Total runtime of q) / (Total runtime of all queries) * 100

(It also can be calculated as Timeshare(query q) = 100*aqet*runsPerQuery/totalRuntime, where

aqet is the average query execution time for a query, runsPerQuery is the number of runs of that query)

 AQET: average query execution time (seconds): The average execution time of each query

computed by the total runtime of that query and the number of executions.

AQET(q) = (Total runtime of q) / (number of executions of q)

 QMpH: Queries Mixes per Hour. Number of query mixes with different parameters that are

executed per hour against the SUT

 D2.1.5 – v. 1.0

Page 9

BSBM 500B Bulk Load

Each machine loaded its local set of files using the standard parallel bulk-load mechanism of Virtuoso. This

means that multiple files are read at the same time by the multiple cores of each CPU. The best performance

was obtained with 7 loading threads per server process. Hence, with two server processes per machine and

12 machines, 168 files were being read at the same time.

The total uncompressed size of teh dataset is 28TB yet the database size (which contains the data x in

different clustered indexes) ends up 18TB, thanks to compression.

Data loading was done in many steps, with different sets of machines as 2 of the initial 12 machines were

defective (extremely slow disks). Parts of the load were done with a single 1Gbit Ethernet per unit, others

with InfiniBand. The best sustained load rate with Ethernet was 5.2Mt/s and 6.8Mt/s with InfiniBand.

The initial load experiment suggests that if the data can be loaded as a single bulk load this will finish under

24h with the cluster used.

Following is a sample starting 6 hours before the end of the load and covering 4 hours. The numbers are

triples per second measured in one minute windows, first average (, i.e. 5.8Mt/s), then the rate for the slowest

and the fastest minute:

select avg (lm_rows_per_s), min (lm_rows_per_s), max (lm_rows_per_s) from ld_metric where lm_dt

between cast ('2014-8-16 00:00:00' as datetime) and cast ('2014-8-16 04:00:00' as datetime);

5804637 39072 7149827

 D2.1.5 – v. 1.0

Page 10

BSBM 500B Explore
This section discusses the single and multiuser runs of the Explore workload.

Runs are made under the following conditions. All runs are warm i.e., the second run with the same seed is

reported:

 1 client, 100 mixes

 16 clients 64 mixes, all clients on same server

 32 clients 64 mixes, all clients on same server

 48 clients, 2 clients per server

The BSBM driver data on this run produced the following table of results:

500B triples

 Single-client Multi-client (16) Multi-client (32) Multi-client (48)

runtime 1840 233.38 229.36 224.85sec

Tput 24447087.13 185100899.40 188347545.99 192130607.00

Qmph 195.57 1480.80 1506.78 1537.04

 AQET Timeshare AQET Timeshare AQET Timeshare AQET Timeshare

Q1 0.118 0.64% 0.201 0.58% 0.366 0.56% 0.461 0.52%

Q2 0.016 0.53% 0.035 0.62% 0.045 0.42% 0.095 0.64%

Q3 0.211 1.15% 0.122 0.35% 0.150 0.23% 0.296 0.33%

Q4 0.241 1.31% 0.272 0.76% 0.356 0.55% 0.634 0.71%

Q5 8.601 93.55% 16.626 95.77% 31.429 97.15% 43.158 96.77%

Q7 0.083 1.81% 0.102 1.85% 0.105 0.65% 0.144 0.64%

Q8 0.027 0.29% 0.042 0.25% 0.039 0.12% 0.0488 0.11%

Q9 0.006 0.13% 0.013 0.15% 0.012 0.07% 0.013 0.06%

Q10 0.027 0.30% 0.042 0.24% 0.041 0.13% 0.083 0.19%

Q11 0.036 0.20% 0.011 0.03% 0.010 0.01% 0.009 0.01%

Q12 0.009 0.05% 0.011 0.03% 0.047 0.07% 0.013 0.02%

We note that the Tput numbers achieved 24M (single-client) and ~190M (multi-client) are significantly

increased from the previous cluster-baed explore experiments on teh 150B triple dataset (which were 7M

resp 18M).

Network Bottleneck
The motivation for the tested configurations, specifically with respect to the capabilities of the cluster

network hardware, is as follows. In the 48 client case we observe CPU at 7000% in terms of the Linux top

utility (out of a maximum of 19200% for 12*16=192 real cores) and 500K m/s (messages per second) and

around 1GB/s of interconnect throughput. The average message size is thus around 2KB.

 D2.1.5 – v. 1.0

Page 11

In a separate microbenchmark, we measured the peak interconnect throughput for 2KB messages so that 3

threads on each server send a message to every other server and wait for all to have responded before

sending the next. This is a close approximation of the synchronous pattern of resolving RDF literals in Q5,

which is most of the work. The throughput is 800K m/s and 1.7GB/s, without any other work. From this we

estimate that a 72 client simulation would be surely network bound, therefore we stopped at 48 clients.

We also microbenchmarked the interconnect throughput with 20K messages. The resulting throughput is

lower, 709K m/s. The interconnect is clearly congested without other use of the switch. The point to point

ping with long messages does however get close to 2GB/s throughput, which is consistent with the nominal

40Gbit at 110/88 bits, i.e. 32Gbit/s, further subtracting TCP protocol overheads. The switch carries this

throughput port to port on multiple independent pairs of ports, as intended. More efficient use of

interconnect could be obtained via busy waiting and use of lower level API's, right now the cluster uses the

standard TCP/IP calls. The protocol is TTCP, SDP is not used. Prior experiments did not show gain from

SDP or zero copy.

Platform Utilization
The Explore workload brings the working set in memory. Below is a sample of a 60s window showing the

cluster activity during a run on 96 query mixes on 48 threads, two connected to each of the 24 SPARQL end

points:

Cluster 24 nodes, 66 s. 171773 m/s 1048171 KB/s 5452% cpu 112% read 60579% clw threads 711r 0w

668i buffers 104235251 1019 d 43 w 0 pfs

cl 1: 2584 m/s 2620 KB/s 174% cpu 5% read 3017% clw threads 33r 0w 31i buffers 4320122 15 d 9 w 0

pfs

cl 2: 4007 m/s 2979 KB/s 179% cpu 6% read 2610% clw threads 30r 0w 30i buffers 4306404 11 d 0 w 0

pfs

cl 3: 4701 m/s 28199 KB/s 200% cpu 7% read 3029% clw threads 21r 0w 21i buffers 4254030 10 d 0 w 0

pfs

cl 4: 3208 m/s 1649 KB/s 190% cpu 7% read 2605% clw threads 34r 0w 34i buffers 4240268 12 d 0 w 0

pfs

cl 5: 3242 m/s 3242 KB/s 183% cpu 5% read 2802% clw threads 36r 0w 36i buffers 4322908 10 d 0 w 0

pfs

cl 6: 33512 m/s 597837 KB/s 715% cpu 6% read 270% clw threads 50r 0w 13i buffers 4776538 11 d 32 w

0 pfs

cl 7: 2245 m/s 2942 KB/s 185% cpu 5% read 2036% clw threads 28r 0w 28i buffers 4206852 10 d 0 w 0

pfs

cl 8: 25852 m/s 52278 KB/s 256% cpu 5% read 2578% clw threads 35r 0w 32i buffers 4542751 65 d 0 w

0 pfs

cl 9: 14942 m/s 52646 KB/s 251% cpu 5% read 3398% clw threads 26r 0w 26i buffers 4668849 227 d 0 w

0 pfs

cl 10: 10858 m/s 26787 KB/s 225% cpu 4% read 1922% clw threads 25r 0w 25i buffers 4366502 11 d 0 w

0 pfs

cl 11: 3975 m/s 11121 KB/s 187% cpu 2% read 3201% clw threads 33r 0w 33i buffers 4427374 14 d 0 w

0 pfs

cl 12: 1573 m/s 1046 KB/s 180% cpu 1% read 2654% clw threads 23r 0w 23i buffers 4221077 9 d 0 w 0

pfs

cl 13: 14395 m/s 66537 KB/s 225% cpu 3% read 2905% clw threads 23r 0w 23i buffers 4236593 12 d 0 w

0 pfs

cl 14: 2158 m/s 1677 KB/s 172% cpu 3% read 3082% clw threads 30r 0w 30i buffers 4209747 10 d 0 w 0

pfs

cl 15: 1835 m/s 2135 KB/s 181% cpu 4% read 2247% clw threads 29r 0w 29i buffers 4157306 10 d 0 w 0

pfs

cl 16: 3518 m/s 1423 KB/s 176% cpu 3% read 3555% clw threads 39r 0w 39i buffers 4243402 13 d 0 w 0

pfs

cl 17: 4224 m/s 27842 KB/s 209% cpu 4% read 2133% clw threads 27r 0w 27i buffers 4280584 14 d 0 w

0 pfs

 D2.1.5 – v. 1.0

Page 12

cl 18: 1608 m/s 799 KB/s 174% cpu 4% read 2023% clw threads 28r 0w 28i buffers 4221572 18 d 0 w 0

pfs

cl 19: 1337 m/s 1493 KB/s 179% cpu 3% read 3299% clw threads 32r 0w 32i buffers 4240334 10 d 0 w 0

pfs

cl 20: 12365 m/s 92368 KB/s 277% cpu 4% read 2583% clw threads 29r 0w 29i buffers 4637691 485 d 0

w 0 pfs

cl 21: 5673 m/s 7000 KB/s 204% cpu 4% read 2441% clw threads 34r 0w 34i buffers 4337884 8 d 1 w 0

pfs

cl 22: 2903 m/s 9996 KB/s 178% cpu 4% read 3014% clw threads 34r 0w 34i buffers 4263713 13 d 1 w 0

pfs

cl 23: 8133 m/s 49978 KB/s 266% cpu 4% read 2164% clw threads 15r 0w 14i buffers 4371113 8 d 0 w 0

pfs

cl 24: 2910 m/s 3562 KB/s 273% cpu 4% read 996% clw threads 17r 0w 17i buffers 4381637 13 d 0 w 0

pfs

We see that the load is even with many processes working at or around 200% CPU and that the platform

utilization is around 1/4 (since each Virtuoso process "has" 8 real cores, hence 800% CPU max). The cross

sectional interconnect traffic of over 1GB/s suggests, as mentioned, an interconnect bound situation, rather

than an I/O bound situation.

Further, the 66000% clw number on the top line indicates that on the average 660 threads are waiting for a

reply from another partition. This is caused almost exclusively by the sorting on product label in Q5. Notice

that string literals, due to their encoding into O numbers (SPOG storage), must be looked up when their real

value is used, which requires partitioned network traffic.

As an experiment, we replaced the sort on label in Q5 by a sort on a numeric property. The platform

utilization is as follows:

The clw% drops to 4200 but the run time stays within 10%.

The situation remains is interconnect bound.

We remind that in previous deliverables we have already written about the undesired property of Q5 to

dominate the BSBM Explore workload. It remains our recommendation to change the workload with respect

to this query.

Query Plan Analysis
The Explore workload offers fairly little opportunity for query optimization. We note that all queries have

an order by and a limit. Thus, after the order by has some initial content, an extra condition can be pushed

down into the selection. So, if the results are sorted by descending date and there is a limit of 5 and 5 results

exist, no results with a date greater than the 5th in the order by need be explored. This restriction can be

pushed down as early as possible. This is done but the gains are not large since the queries touch relatively

few rows.

Since the explore mix consists almost exclusively of Q5, we will briefly look at how this works.

We look at plans for Q1 and Q5.

Q1 finds products which have two given features. The most selective feature is used as a hash build side.

Then the second most selective probes this, after which there is a range check and fetch of the label. This

goes into another hash build side. Then the product type is scanned and the second hash table is probed.

An index based plan that starts with the most selective feature is 5% faster than this hash plan. The break-

even between index and hash is a constant problem of RDF.

The plan is in Appendix A (r500qp.txt)

Q5 gets all products that have a feature in common with a given product and have numeric quantities close

to those of the first product. The top 5 are returned in order of label. First the properties of the fixed product

are fetched. Then it is joined to products sharing features with it, then the properties are compared.

 D2.1.5 – v. 1.0

Page 13

Finally there is a top k order by on the label. The join covers 3 cross partition stages, first the initial product,

then the product features of this, then the similar product. There is a distinct but since the partitioning key is

in the distinct (the similar product), the distinct is collocated. There is a top k restriction on the name, so if

are already 5 names a product with name that would fall after these is rejected early. The check is late in the

plan and does not help much.

We note that the operation checking the label against the last label so far is 85% of the time. This is not

wasted per se since the label string is used anyway in the sorting. The mapping from the O, a literal

identifier, to the string is a cross partition round trip. It is done on a large vector of O's at a time but still has

latency. In the case at hand this is done on 133K rows. These are however spread over 384 partitions, thus

the single vector is not very long. Each element of this vector may go to any of the 24 servers, hence a very

large number of short messages is generated. The effect is seen in the mentioned 66000% cluster wait (clw)

in the run statistics of Explore.

For this reason some RDF stores inline short string literals, e.g. Big Data, earlier Virtuoso's. Virtuoso does

not presently inline short strings because this is bad for compression.

The solution to the problem is eventually found in adaptive schema where some properties of some

characteristic sets may be declared inlined if under a certain lenBh.

Execution Profiles
Below is a oprofile profile on the BSBM Explore workload:

This profile was obtained the 37.5G triple scale, but we think the results prepresentative of higher scales as

well.

Commentary on the function represented is inline.

CPU: Intel Sandy Bridge microarchitecture, speed 2299.98 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No unit

mask) count 100000

samples % symbol name

1847991 9.7017 itc_col_seg

1477473 7.7565 cs_decode

1084011 5.6909 ce_filter

-- Index lookup, mostly range lookup in Q5 on p = constant s = ? and o > ? and o < ?

951535 4.9954 clrg_partition_dc

-- partitioning a vector into multiple messages, one per target partition

785421 4.1234 dv_compare_so

783786 4.1148 cr_n_rows

-- index lookup

633497 3.3258 memcpy_16

628326 3.2986 session_buffered_write

-- Partitioning

507507 2.6643 ce_col_cmp

448827 2.3563 dc_append_bytes

-- index lookup and fetching columns from index

 D2.1.5 – v. 1.0

Page 14

438940 2.3044 ce_search_bm

423946 2.2257 ce_search_cmp

340257 1.7863 itc_ce_value_offset

339494 1.7823 ce_bm_nth

331564 1.7407 itc_next_ce_skip

312521 1.6407 itc_set_row_spec_param_row

-- index lookup, bm is for bitmap compression, e.g. any psog pon ps where ps is unique, i.e.

functional properties

296657 1.5574 ks_vec_partition_fast

-- partitioning

284161 1.4918 dc_any_value

279483 1.4672 ds_add

-- index lookup

272228 1.4292 clib_vec_read_into_slots

-- partitioning

269357 1.4141 itc_any_param

239101 1.2552 box_equal

236278 1.2404 itc_next_ce

225411 1.1834 itc_next_set_cmp

224176 1.1769 ce_result

222729 1.1693 ce_intd_range_ltB

-- More index lookup

We see that the directly scale-out related functions are under 20% of CPU. The rest is index access. Hash

operations play no role here even though they occur in the plans, however Q5 index access obscures them.

The workload is very network intensive, as we have seen.

 D2.1.5 – v. 1.0

Page 15

BSBM 500B Update + Update & Explore

The update is run for 100 update mixes after multiuser Explore, however the working set is not warm. The

CPU is just 72% across the whole cluster (from a max of 19200%, hence each core is just 0.3% busy) at

throughout the run. The first run takes 150s. Repeating the same updates, which has no effect, takes 4.1s,

hence 40x more CPU usage.

The Update average execution times are negligible compared to the Explore times.

Next, 32 update threads are run for 3200 update mixes. All are connected to the same process. The CPU is

at 360% with an average 120 reads in parallel. The run is disk bound, interconnect traffic is 11K m/s and

1MB/s. The 3200 update mixes take 72s.

Small updates are slower than large ones due to less benefit from vectoring, i.e. few nearby rows are likely to

be hit. To measure the overhead in message passing and parsing, we run the same updates again. The run

takes 12.5s. The message traffic and scheduling is much the same but deletes are not found and inserts are

already in place, so database operations are reduced to between 1/3rd - 1/5th, i.e. just the action of finding

the place for the insert/delete.

It appears that the BSBM driver is not adequate for getting to a steady state in updates, since not enough

updates can be generated. Hence to see steady state update throughput, another driver is used, a Virtuoso

stored procedure running on a separate instance outside of the cluster. The driver has any number of threads

which connect to a given SPARQL end point and execute updates similar to the BSBM ones. The update mix

is 2 deletes for every 3 inserts. The insert makes 5 new products, 6 new offers and 1 review for each of the 5

products, for a total of 505 triples. The deletes delete a single product from one of the inserted ones, with 36

triples in each delete. The identifiers are random and the random update can be run indefinitely to produce a

steady state without any dependence on the data generator.

A first run of the 96 explore query mixes with 48 clients is executed as first warm-up. After this finishes

updates are run with 3 clients per end point.

This is continued until steady state is reached 120 minutes into the run the status line is:

Cluster 24 nodes, 45 s. 314761 m/s 52487 KB/s 3733% cpu 5593% read 5673% clw threads 110r 0w 70i

buffers 140699103 49402531 d 493 w 0 pfs

We note that disk predominates, with network at just 314K m/s. While eventually the update workload will

be in memory a warm up time of hours is unworkable for benchmarking. In this case, we had to accept that

despite the warm up the measured experiment would not be warm. This suggests that future BSBM Update

advances should pursue the use of SSD hardware, which cut down I/O time considerably.

It is worth noting that both Explore and BI do not suffer from prohibitive warm-up times even though they

read from disk. This is due to the very high inherent parallelism in either large scans or large batches of

index lookups. Up to 2 million reads may be concurrently scheduled across the cluster. Each of these in turn

brings in quite often a whole extent worth of pages. An extent in this case is a set of 256 consecutive 8K

pages used for the same column.

The random update however lacks all such opportunities since it by definition consists of point lookups that

become known a few at a time. Such a worst case may only be handled by increasing random IO throughput

in the hardware.

After 160 minutes of warmup, the working set is still not entirely hot but the read experiment had to be start

to limitation we had in terms of SCILENS computation time. The relevant status line is:

Cluster 24 nodes, 19 s. 564898 m/s 94072 KB/s 6141% cpu 3007% read 4746% clw threads 97r 0w 71i

buffers 154107505 60776225 d 260 w 0 pfs

We note that messages are numerous and short. Interconnect (564K m/s) at this stage has at this stage

possibly become more limiting than disk.

 D2.1.5 – v. 1.0

Page 16

And excerpt of the triples/s averaged over each run minute from the update driver log table follows. This is

without explore workload:

RUN_MINUTE aggregate

INTEGER NOT NULL INTEGER NOT NULL

0 220351

1 230703

2 236693

3 238131

4 242943

5 235805

6 196003

7 206448

8 216047

9 220980

10 225089

11 228730

While the Update workload from the previous section keeps running, a concurrent Explore workload is now

started with 48 clients, 2 per end point.

Explore & Update do not hit lock contention since the reads are non-locking read committed.

 A status line during the Explore:

Cluster 24 nodes, 49 s. 155650 m/s 1050665 KB/s 6086% cpu 1841% read 68557% clw threads 896r 0w

687i buffers 158093819 62758195 d 10285 w 1 pfs

The Explore completes in 249 seconds, producing the following table of results:

 500B triples

 Multi-client (48)

runtime 249.00sec

Tput 73493326.42

Qmph 1387.94

 AQET Timeshare

Q1 3.863 (3.90%)

Q2 0.247 (1.49%)

Q3 3.958 (4.00%)

Q4 7.953 (8.04%)

Q5 31.077 (62.81%)

Q7 2.882 (11.65%)

Q8 2.122 (4.29%)

Q9 0.013 (0.29%)

 D2.1.5 – v. 1.0

Page 17

Q10 1.696 (3.43%)

Q11 0.042 (0.04%)

Q12 0.043 (0.04%)

The update rates per minute fall during the explore as follows:

minute, triples/s

15 238278

16 245461

17 245638

18 164704

19 39853

20 23365

21 86720

22 191348

23 230824

The explore is 100% warm, having been run before but the update continues at about 20 disk reads pending

at any one time. The Explore is hardly slowed down (Qmph 1387 vs 1537) but the update rate takes a hit.

Neither pre-empts the other and the behaviour is smooth.

The update rate continues to grow after the read experiment, with the status like:

Cluster 24 nodes, 54 s. 626889 m/s 104420 KB/s 6871% cpu 1764% read 4321% clw threads 77r 0w 70i

buffers 167890634 69598578 d 62 w 0 pfs

corresponding to a rate of 263K triples/s.

We note that the random insert rate is about 16-20x lower than the bulk load rate. This does not come from

transactionality but from lack of locality and from predominance of large numbers of short messages. There

is hardly any gain from vectoring in column store inserts and deletes if all hits are spread far apart, as is the

case here. Lock or latch contention is minimal.

The update driver is found at binsrc/tests/bibm/bibm_update.sql in the Virtuoso v7fasttrack feature/analytics

on github.

https://github.com/v7fasttrack/virtuoso-opensource

 D2.1.5 – v. 1.0

Page 18

BSBM 500B Business Intelligence
The BSBM BI workload is run with a single user and with 4 concurrent users. The workload consists in both

cases of 4 query mixes each with 7 different queries, with drill down behaviour enabled.

A single query mix is in both cases executed as warm-up before the reported results.

 500B triples

 Single-client Multi-client (4)

runtime 5936sec 7854sec

Tput 278960 210827

Qmph 2.426 1.833

 AQET Timeshare AQET Timeshare

Q1 60.01 (10.78%) 1264.88 (17.34%)

Q2 20.04 (1.35%) 36.03 (0.49%)

Q3 57.29 (3.86%) 846.69 (11.61%)

Q4 127.82 (51.68%) 500.25 (41.16%)

Q6 5.10 (0.34%) 54.24 (0.74%)

Q7 5.88 (2.77%) 60.84 (5.84%)

Q8 72.24 (29.21%) 277.22 (22.81%)

This section discusses advances in query optimization and execution since the last large BSBM BI run from

January 2013.

The cost model is greatly changed and supports diverse hash based operators which were not previously

supported. The TPC-H blog series on the Virtuoso blog discusses the query optimization advances in depth.

It cannot be overstated that RDF databasing can only make significant progress by incorporating the best of

relational technology. TPC-H is thus an appropriate illustration of what a database needs to do, whether for

relational or RDF workloads.

The supported hash based operators include:

 group by with and without partitioning

 distinct

 hash join with different cases for:

o single integer key existence check

o single integer key with dependent data, either unique or non unique

o multipart key in unique and non-unique variants.

Each of these can occur in a partitioned or replicated variant. In the partitioned case, a high cardinality key

is used to decide which partition the hash entry goes to, in replication, all server processes have a local copy

of the hash table.

Each variant of hash table may occur with and without a Bloom filter. A Bloom filter is made if the build

side involves a join or a selection, which is most often the case.

 D2.1.5 – v. 1.0

Page 19

Any single key hash table probe where the probe value is a column can be merged inline in a table scan or

index lookup. Thus the hash operation is done before fetching (materializing) dependent data, thus

effectively supplying late materialization.

If a hash table is not guaranteed unique (cardinality restricting), it cannot be merged into the probing table

access but its Bloom filter can, since this is always cardinality reducing. Thus Bloom filters are separated

from the actual hash table probe.

If a hash table in a cluster setting is partitioned, its Bloom filter, which is much smaller can be replicated.

This offers very effective

Pre-filtering also for large hash joins and cuts down on interconnect traffic.

A special right outer join variant of a hash join operator is provided, this is described in detail in the TPC-H

blog series under Q13. This is an always partitioned hash join where the left side (mandatory) builds a hash

and is probed by the right (optional) side.

The items not hit in the probe are then the ones for which the optional side has no match.

A hash join build side is first materialized as a table or row-wise tuples. A second pass constructs a linear

hash table from this, with full parallelism. In this way, a hash join build always knows the optimal size and

never needs to rehash.

A group by or distinct hash table shares the same structure but does need to rehash when growing. These

hash tables are also linear and their layout is similar to the hash join build sides, so a hash join operator can

probe these.

The hash join implementation is according to best relational practices. This does have some RDF

adaptations, though, since the set of data types is larger and includes run time typed columns.

The initial 150 B BSBM runs in Jan 2013 were done without any hash join and also without partitioned

group by. By the correct use of hash join in and partitioned group by the performance of the BI workload

has increased by at least an order of magnitude, often cutting hours into minutes.

Query Plan Analysis
We take a sample of Q1, Q3 and Q8 of the BI mix. The query texts and execution profiles are in Appendix A

(r500qp.txt).

Q1: One of the principal problems of RDF query optimization is the proper choice of index vs hash based

plans. Depending on parameter choices plans will greatly vary.

We consider BI Q1: This counts reviews of products whose manufacturer is from one country and where the

reviewer is from another country. The counts are grouped by the product type.

In the attached plan, we see three hash tables are built and replicated into all partitions:

1. all product types

2. all things from Austria

3. all things from Japan.

The plan then scans all producers and leaves the ones in the Austria hash table. The next join to reviews is

collocated. The next step from review to reviewer is partitioned on the reviewer, hence cross partition. The

partition break is denoted by stage <nn>. The reviewers are hash joined to the entities from the country, this

is not a partition break since the hash table is replicated. The next step is in a different partition, by product,

getting the type. The check for this being a product type is by hash. The final stage is partitioning on the

product type, which is the grouping key. Since this is a relatively high cardinality item, a few hundred

thousand distinct values, the group by is partitioned.

With other parameter choices, index based plans are generated. We note that checking whether a reviewer is

from a country based on index has both S and O specified, with O as constant. It is imperative to use an

 D2.1.5 – v. 1.0

Page 20

index partitioned on S and not one on O, as the latter would create a bottleneck where all intermediate results

pass via a single partition.

If the query is run entirely without hash join, the performance is extremely bad since checking whether a

product type is in fact a product type hits extreme partition skew, as all products have one type in common.

Doing this check by replicated hash table resolves this.

Thus, the index only plan takes 509s with 1150% CPU and the hash plan shown here takes 55s with 3500%

CPU.

Q3: Lists the products with the greatest increase in review count between two given months. The same

group by is made twice with different parameters and the results are joined.

The grouping key is of high cardinality, with around a billion values, hence the operation is partitioned.

Since a group by is a hash table basically identical to one that is used for hash join, the plan uses one of the

group by's to probe the other and then sorts the products in both hash tables by the ratio of the counts.

The index based plan starts with a group by, then reads it, then for each batch of grouping keys it makes a

nested group by. The index based plan has poor platform utilization and is not well distributed, hence runs

for 8 hours. In specific, all the tuples from te first group by pass via a single point before being again spread

out to do the second group by. This is the reason why Q3 was the longest running of the Jan 2013 runs.

The hash plan has perfect parallelism and executes in minutes.

Q8: Selects vendors with prices below an average for a product within a certain category.

The plan makes two hash tables, one for the count of offers for products in the category and another or the

average price of the product in the category. The average is done by sum and count, the division is done

after the probe. Both hash build sides are group by's.

The plan then takes the average price per vendor and product. This is read and probes the hash table with the

average price for the product. This generates the final group by.

We note that using a group by space as hash build side is much better than making a hash table of the derived

table feeding the group by.

For one, the group by's has less rows than the data producing it. TPC-H has little dependence on this trick,

with only slight gains possible in Q17 and Q20. BSBM BI and TPC DS have more use for this. The typical

case is BSBM BI Q3, with a comparison of two time windows, a common business question.

This is one of the heavier queries of the workload and has a good platform utiilization with the hash based

plan shown. We note that this single query reaches much higher platform utilization than the explore mix

regardless of how many concurrent clients are added.

Platform Utilization
The per server status follows for one execution of Q8:

Cluster 24 nodes, 304 s. 2588136 m/s 989517 KB/s 17276% cpu 0% read 3% clw threads 1r 0w 0i

buffers 239996317 1022 d 0 w 2044 pfs

cl 1: 10699 m/s 27811 KB/s 529% cpu 0% read 3% clw threads 1r 0w 0i buffers 9996487 15 d 0 w 2042

pfs

cl 2: 84471 m/s 37699 KB/s 578% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 9 d 0 w 2 pfs

cl 3: 99450 m/s 39817 KB/s 589% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 10 d 0 w 0

pfs

cl 4: 111218 m/s 41414 KB/s 612% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 11 d 0 w 0

pfs

cl 5: 118444 m/s 42347 KB/s 604% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 10 d 0 w 0

pfs

cl 6: 113105 m/s 41628 KB/s 612% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 11 d 0 w 0

pfs

 D2.1.5 – v. 1.0

Page 21

cl 7: 100352 m/s 39953 KB/s 590% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 11 d 0 w 0

pfs

cl 8: 86098 m/s 38049 KB/s 588% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 65 d 0 w 0

pfs

cl 9: 81477 m/s 37144 KB/s 575% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 227 d 0 w 0

pfs

cl 10: 88042 m/s 38015 KB/s 586% cpu 0% read 0% clw threads 0r 0w 0i buffers 9999948 12 d 0 w 0

pfs

cl 11: 100786 m/s 39707 KB/s 588% cpu 0% read 0% clw threads 0r 0w 0i buffers 9999989 13 d 0 w 0

pfs

cl 12: 113968 m/s 41504 KB/s 611% cpu 0% read 0% clw threads 0r 0w 0i buffers 9999979 9 d 0 w 0

pfs

cl 13: 101323 m/s 39803 KB/s 587% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 12 d 0 w 0

pfs

cl 14: 114378 m/s 41517 KB/s 610% cpu 0% read 0% clw threads 0r 0w 0i buffers 9999989 11 d 0 w 0

pfs

cl 15: 103065 m/s 40022 KB/s 588% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 11 d 0 w 0

pfs

cl 16: 98809 m/s 39452 KB/s 596% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 12 d 0 w 0

pfs

cl 17: 101625 m/s 39839 KB/s 588% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 15 d 0 w 0

pfs

cl 18: 115044 m/s 41624 KB/s 611% cpu 0% read 0% clw threads 0r 0w 0i buffers 9999989 19 d 0 w 0

pfs

cl 19: 143729 m/s 45367 KB/s 1103% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 9 d 0 w 0

pfs

cl 20: 147593 m/s 45837 KB/s 1130% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 485 d 0 w

0 pfs

cl 21: 144081 m/s 45398 KB/s 1111% cpu 0% read 0% clw threads 0r 0w 0i buffers 9999946 9 d 0 w 0

pfs

cl 22: 151321 m/s 46338 KB/s 1120% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 13 d 0 w 0

pfs

cl 23: 107580 m/s 52905 KB/s 1025% cpu 0% read 0% clw threads 0r 0w 0i buffers 10000000 9 d 0 w 0

pfs

cl 24: 151466 m/s 46314 KB/s 1131% cpu 0% read 0% clw threads 0r 0w 0i buffers 9999990 14 d 0 w 0

pfs

The load is over half the platform, as each process has 8 real cores plus another 8 as core threads, most of the

real cores are busy. All 16 threads busy is around 30% higher in throughput than 8 threads busy when

running memory intensive workloads like hash joins.

The messages are again many and short but there is much less synchronization than with the literal to string

mapping problem of Explore Q5. Hence there is more choice of work to do and longer batches of running

without depending on network.

Execution Profiles
Next we look at execution profiles for the BI mix:

CPU: Intel Sandy Bridge microarchitecture, speed 2299.98 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No unit

mask) count 100000

samples % symbol name

2645238 6.0826 setp_chash_run

-- group by

1886395 4.3377 clrg_partition_dc

-- splitting a vector into per-partition messages

 D2.1.5 – v. 1.0

Page 22

1873830 4.3088 itc_col_seg

-- index lookup, table scan

1597807 3.6741 dk_alloc

-- memory allocation, small blocks

1372047 3.1549 cs_decode

-- Table scan, column decompression

1281678 2.9471 ce_vec_iri32_sets_hash

-- invisible hash join, i.e. hash probe/Bloom filter merged into table lookup

1163678 2.6758 memcpy_16

-- memcpy, mostly for messages

984760 2.2644 cha_cmp

-- compare of hash join keys with keys in hash table or group by

885944 2.0372 ce_result

-- fetching column values, decompression

882550 2.0294 ds_add

846434 1.9463 ce_search_bm

694173 1.5962 itc_ce_value_offset

-- index lookup

672532 1.5464 cha_insert_1i

-- hash join build, single integer/iri id key with dependent

668279 1.5367 page_wait_access

-- buffer cache lookup

654763 1.5056 ce_search_cmp

647860 1.4897 itc_next_ce_skip

-- index lookup

641572 1.4753 ks_vec_partition_fast

-- partitioning

625931 1.4393 itc_next_set_cmp

587607 1.3512 itc_single_row_opt

573211 1.3181 ce_bm_nth

-- index lookup

555493 1.2773 qn_result

545691 1.2548 dc_append_bytes

-- query execution

496181 1.1409 itc_any_param

-- index lookup

488830 1.1240 cha_inline_1i_iri32

-- hash join merged into table lookup, special case for array of iri id's in robing column

483049 1.1107 box_hash

434832 0.9999 itc_fetch_col_vec

-- buffer cache lookup

427897 0.9839 dk_free_tree

-- small memory free

As expected we see more hash based operators with still more index than hash. This is appropriate to the

workload, the plans for the BI mix are appropriate.

 D2.1.5 – v. 1.0

Page 23

The dk_alloc/dk_free_tree pair is for allocating single values and is an extra overhead that can in many cases

be replaced by allocating a vector of values as a single block. Small individual allocations are mostly bad for

performance. Normal query execution does not have such.

The TPC-H blog series contains more examples of CPU profiles for analytical workloads.

We see here that while TPC-H is predominantly hash joins, the BSBM BI still has a large fraction of index

access.

 D2.1.5 – v. 1.0

Page 24

Conclusions

The present work defines the limits of accomplishment when applying best of breed analytics DB techniques

to RDF workloads. The scale out implementation is rich in features and different execution patterns and

does not suffer from any easily avoidable naivety or stupidity or lack of support for something that is

evidently needed.

However, the present work remains naive insofar it uses the RDF quad as the basis of its physical data

representation. Better results, this time on a true par with the best in relational analytics are possible when

abandoning the quad as the unit of storage and moving to a physical representation based on characteristic

sets.

Thus, a quads based representation has been taken to its natural limits and its shortcomings have been

compensated for as much as feasible, through the use of vectoring, hash joins, partitioned operations, query

optimization that optimizes based on physical data order and colocation in partitions and so forth. This is

highly competent core database work by any standard.

The next steps, which are in part already taken consist of breaking free from the idea that data whose

meaning is defined by triples and graphs would have to be stored as such. In this way, RDF will find its

natural use as an interchange format and a schema-less way of expressing queries and applications. The

schema-less-ness and self-description of RDF is in our experience the principal basis of its adoption. This

must be preserved, hence a rigid schema-first approach with SPARQL a language is ruled out. Diverse such

implementations have existed against relational back ends and predictably have failed to deliver RDF's

promise of freedom and flexibility. However, keeping this promise does not imply forever carrying the

basically needless burden of endless self-joins and the resulting overheads.

Thus the next steps will consist of using the structure inherent in RDF to guide physical storage. Initial

results show a threefold increase in bulk load rates and a halving of space consumption with the BSBM data

discussed here.

 D2.1.5 – v. 1.0

Page 25

Appendix A – Query Plans

Explore

Q1 sparql {#Q1

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?product ?label

WHERE {

 ?product rdfs:label ?label .

 ?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/ProductType220032> .

 ?product bsbm:productFeature <http://www4.wiwiss.fu-

berlin.de/bizer/bsbm/v01/instances/ProductFeature3485024> .

 ?product bsbm:productFeature <http://www4.wiwiss.fu-

berlin.de/bizer/bsbm/v01/instances/ProductFeature12834> .

 ?product bsbm:productPropertyNumeric1 ?value1 .

 FILTER (?value1 > 347)

 }

ORDER BY ?label

LIMIT 10

} {

time 0.0017% fanout 1 input 1 rows

time 0.21% fanout 1 input 1 rows

{ hash filler

wait time 6.7% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 0.045% fanout 777 input 1 rows

RDF_QUAD_POGS 7.8e+02 rows(t4.S)

 P = #/productFeature , O = #/ProductFeature3485024

time 1.6% fanout 2 input 777 rows

Stage 2

time 1.3% fanout 0 input 18648 rows

Sort hf 39 replicated 8e+02 rows(t4.S)

}

}

 D2.1.5 – v. 1.0

Page 26

time 0.25% fanout 1 input 1 rows

{ hash filler

Subquery 45

{

wait time 26% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 4.3% fanout 204 input 1 rows

RDF_QUAD_POGS 9.5e+04 rows(t5.S)

 P = #/productFeature , O = #/ProductFeature12834

hash partition+bloom by 43 (tmp)hash join merged if unique card 6.3e-07 -> ()

time 0.0061% fanout 1 input 204 rows

Hash source 39 not partitionable 6.3e-07 rows(t5.S) -> ()

After code:

 0: t4.S := := artm t5.S

 4: BReturn 0

time 1.6% fanout 0.0686275 input 204 rows

Stage 2

time 7.3% fanout 0.754902 input 204 rows

RDF_QUAD 0.96 rows(t6.S)

 P = #/productPropertyNumeric1 , S = q_t5.S , O > 347 O > 347

time 5% fanout 1 input 154 rows

RDF_QUAD 1.4 rows(t2.S, t2.O)

 inlined P = ##label , S = k_q_t4.S

After code:

 0: t4.S := := artm t4.S

 4: t6.S := := artm t6.S

 8: t5.S := := artm t5.S

 12: t2.S := := artm t2.S

 16: t2.O := := artm t2.O

 20: BReturn 0

time 73% fanout 17.7403 input 154 rows

Stage 3

time 4.2% fanout 0 input 3696 rows

Sort hf 88 replicated 8e+02 rows(t4.S) -> (t6.S, t5.S, t2.S, t2.O)

}

}

}

Subquery 94

{

time 0.0092% fanout 1 input 1 rows

 D2.1.5 – v. 1.0

Page 27

{ fork

wait time 2.3% of exec real time, fanout 154

QF {

time 0.14% fanout 229 input 1 rows

RDF_QUAD_POGS 3e+03 rows(s_20_10_t1.S)

 P = ##type , O = #/ProductType220032

hash partition+bloom by 92 ()

time 0.053% fanout 0.672489 input 229 rows

Hash source 88 0 rows(s_20_10_t1.S) -> (s_20_10_t4.S, s_20_10_t3.S, s_20_10_t0.S,

s_20_10_t0.O)

time 0.039% fanout 1 input 154 rows

END Node

After test:

 0: if (s_20_10_t1.S = s_20_10_t4.S) then 4 else 13 unkn 13

 4: if (s_20_10_t1.S = s_20_10_t3.S) then 8 else 13 unkn 13

 8: if (s_20_10_t0.S = s_20_10_t1.S) then 12 else 13 unkn 13

 12: BReturn 1

 13: BReturn 0

time 0.014% fanout 0 input 154 rows

 qf select node output: (qf_set_no, s_20_10_t0.S, s_20_10_t0.O)

}

time 0.063% fanout 1 input 154 rows

Distinct (s_20_10_t0.S, s_20_10_t0.O)

time 1.1% fanout 0 input 154 rows

Precode:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

s_20_10_t0.O -> __RO2SQ -> __ro2sq

}

 2: BReturn 0

Sort (__ro2sq) -> (s_20_10_t0.S)

}

time 0.043% fanout 10 input 1 rows

top order by read (s_20_10_t0.S, __ro2sq)

After code:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

s_20_10_t0.S -> __ID2In -> __id2in

}

 D2.1.5 – v. 1.0

Page 28

 2: label := := artm __ro2sq

 6: product := := artm __id2in

 10: BReturn 0

time 0.00079% fanout 0 input 10 rows

Subquery Select(product, label)

}

After code:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

label -> __RO2SQ -> label

product -> __RO2SQ -> product

}

 2: BReturn 0

time 0.00073% fanout 0 input 10 rows

Select (product, label)

}

Q5 sparql {#Q5

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

SELECT DISTINCT ?product ?productLabel

WHERE {

 ?product rdfs:label ?productLabel .

 FILTER (<http://www4.wiwiss.fu-

berlin.de/bizer/bsbm/v01/instances/dataFromProducer/Product1294222259> != ?product)

 <http://www4.wiwiss.fu-

berlin.de/bizer/bsbm/v01/instances/dataFromProducer/Product1294222259> bsbm:productFeature

?prodFeature .

 ?product bsbm:productFeature ?prodFeature .

 <http://www4.wiwiss.fu-

berlin.de/bizer/bsbm/v01/instances/dataFromProducer/Product1294222259> bsbm:productPropertyNumeric1

?origProperty1 .

 ?product bsbm:productPropertyNumeric1 ?simProperty1 .

 FILTER (?simProperty1 < (?origProperty1 + 120) && ?simProperty1 > (?origProperty1 - 120))

 <http://www4.wiwiss.fu-

berlin.de/bizer/bsbm/v01/instances/dataFromProducer/Product1294222259> bsbm:productPropertyNumeric2

?origProperty2 .

 ?product bsbm:productPropertyNumeric2 ?simProperty2 .

 FILTER (?simProperty2 < (?origProperty2 + 170) && ?simProperty2 > (?origProperty2 - 170))

 D2.1.5 – v. 1.0

Page 29

}

ORDER BY ?productLabel

LIMIT 5

}

{

 time 2.8e-07% fanout 1 input 1 rows

Subquery 28

{

time 7.3e-05% fanout 1 input 1 rows

{ fork

wait time 6.1e+03% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 7e-06% fanout 1 input 1 rows

RDF_QUAD 1 rows(s_23_14_t3.O)

 inlined P = #/productPropertyNumeric1 , S = #/Product1294222259

time 9.5e-06% fanout 1 input 1 rows

Precode:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

s_23_14_t3.O -> __RO2SQ -> __ro2sq

}

 2: temp := artm __ro2sq + 120

 6: temp := artm __ro2sq - 120

 10: BReturn 0

RDF_QUAD 1 rows(s_23_14_t5.O)

 inlined P = #/productPropertyNumeric2 , S = #/Product1294222259

time 9.5e-06% fanout 19 input 1 rows

Precode:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

s_23_14_t5.O -> __RO2SQ -> __ro2sq

}

 2: temp := artm __ro2sq + 170

 6: temp := artm __ro2sq - 170

 10: BReturn 0

 D2.1.5 – v. 1.0

Page 30

RDF_QUAD 19 rows(s_23_14_t1.O)

 inlined P = #/productFeature , S = #/Product1294222259

time 3.9e-05% fanout 0.0526316 input 19 rows

Stage 2

time 0.061% fanout 980979 input 19 rows

RDF_QUAD_POGS 3.4e+03 rows(s_23_14_t2.S)

 P = #/productFeature , O = q_s_23_14_t1.O

time 2.5% fanout 0.136491 input 3.83044e+07 rows

Stage 3

time 8.4% fanout 0.275013 input 3.83044e+07 rows

RDF_QUAD 0.11 rows(s_23_14_t6.S)

 inlined P = #/productPropertyNumeric2 , S = q_s_23_14_t2.S , O > q_q_temp < q_q_temp O >

q_q_temp < q_q_temp

time 3% fanout 0.0795689 input 1.05342e+07 rows

RDF_QUAD 0.1 rows(s_23_14_t4.S)

 inlined P = #/productPropertyNumeric1 , S = k_q_s_23_14_t2.S , O > k_q_q_temp < k_q_q_temp O >

k_q_q_temp < k_q_q_temp

time 0.82% fanout 0.159096 input 838196 rows

RDF_QUAD 1.3 rows(s_23_14_t0.O, s_23_14_t0.S)

 <inlined P = ##label , S = k_q_s_23_14_t2.S

top k on O

time 85% fanout 0.99955 input 133354 rows

END Node

After test:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

s_23_14_t0.O -> __RO2SQ -> __ro2sq

}

 2: __topk := Call __topk (__ro2sq, 0 , 3 , 5 , 0 , 140391824282016 , 0)

 7: if (1 = __topk) then 11 else 12 unkn 12

 11: BReturn 1

 12: BReturn 0

time 0.0055% fanout 0.999887 input 133294 rows

END Node

After test:

 0: if (s_23_14_t0.S = #/Product1294222259) then 5 else 4 unkn 5

 4: BReturn 1

 5: BReturn 0

time 0.016% fanout 0.901297 input 133279 rows

Distinct (s_23_14_t0.S, s_23_14_t0.O)

time 0.029% fanout 0 input 120124 rows

Sort (__ro2sq) -> (s_23_14_t0.S)

time 2.5e-07% fanout 0 input 0 rows

 D2.1.5 – v. 1.0

Page 31

 ssa iterator

time 7.4e-05% fanout 5 input 24 rows

top order by read (s_23_14_t0.S, __ro2sq)

time 2.8e-05% fanout 0 input 120 rows

 qf select node output: (__ro2sq, s_23_14_t0.S)

}

}

time 0.012% fanout 5 input 1 rows

 cl fref read

 output: (__ro2sq, s_23_14_t0.S)

order: 0

After code:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

s_23_14_t0.S -> __ID2In -> __id2in

}

 2: productLabel := := artm __ro2sq

 6: product := := artm __id2in

 10: BReturn 0

time 3e-07% fanout 0 input 5 rows

Subquery Select(product, productLabel)

}

After code:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

productLabel -> __RO2SQ -> productLabel

product -> __RO2SQ -> product

}

 2: BReturn 0

time 3.5e-07% fanout 0 input 5 rows

Select (product, productLabel)

}

Business Intelligence

sparql {#Q7

 prefix bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

 prefix bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

 D2.1.5 – v. 1.0

Page 32

 prefix xsd: <http://www.w3.org/2001/XMLSchema#>

 Select ?product

 {

 { Select ?product

 {

 { Select ?product (count(?offer) As ?offerCount)

 {

 ?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/ProductType1> .

 ?offer bsbm:product ?product .

 }

 Group By ?product

 }

 }

 Order By desc(?offerCount)

 Limit 1000

 }

 FILTER NOT EXISTS

 {

 ?offer bsbm:product ?product .

 ?offer bsbm:vendor ?vendor .

 ?vendor bsbm:country ?country .

 FILTER(?country=<http://downlode.org/rdf/iso-3166/countries#KR>)

 }

 }

} {

Subquery 28

{

{ fork

{ fork

QF {

RDF_QUAD_POGS 2.9e+10 rows(s_17_4_t1.O)

 inlined P = #/product

RDF_QUAD 0.8 rows(s_17_4_t0.S)

 inlined P = ##type , S = k_s_17_4_t1.O , O = #/ProductType1

Sort (s_17_4_t0.S) -> (inc)

}

}

QF {

group by read node

(s_17_4_t0.S, aggregate)

After code:

 D2.1.5 – v. 1.0

Page 33

 0: product := := artm s_17_4_t0.S

 4: offerCount := := artm aggregate

 8: BReturn 0

Subquery Select(product, offerCount)

Sort (offerCount) -> (product)

 ssa iterator

top order by read (offerCount, product)

 qf select node output: (offerCount, product)

}

}

 cl fref read

 output: (offerCount, product)

order: 0 desc

After code:

 0: product := := artm product

 4: BReturn 0

Subquery Select(product)

}

END Node

After test:

 0: if ({

QF {

Stage 1

RDF_QUAD_POGS 13 rows(s_28_14_t2.S)

 P = #/product , O = lcast

Stage 2

RDF_QUAD 1 rows(s_28_14_t3.O)

 inlined P = #/vendor , S = q_s_28_14_t2.S

Stage 3

RDF_QUAD_POGS 0.15 rows()

 inlined P = #/country , O = ##KR , S = q_s_28_14_t3.O

 qf select node output: (qf_set_no)

 qf select node output: (qf_set_no)

}

Subquery Select(<none>)

}

) then 5 else 4 unkn 5

 4: BReturn 1

 5: BReturn 0

After code:

 0: QNode {

dpipe

 D2.1.5 – v. 1.0

Page 34

product -> __ID2In -> product

}

 2: BReturn 0

Select (product)

}

sparql {#Q1

prefix bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

prefix rev: <http://purl.org/stuff/rev#>

Select ?productType ?reviewCount

{

 { Select ?productType (count(?review) As ?reviewCount)

 {

 ?productType a bsbm:ProductType .

 ?product a ?productType .

 ?product bsbm:producer ?producer .

 ?producer bsbm:country <http://downlode.org/rdf/iso-3166/countries#AT> .

 ?review bsbm:reviewFor ?product .

 ?review rev:reviewer ?reviewer .

 ?reviewer bsbm:country <http://downlode.org/rdf/iso-3166/countries#JP> .

 }

 Group By ?productType

 }

}

Order By desc(?reviewCount) ?productType

Limit 10

}

{

time 9e-08% fanout 1 input 1 rows

time 0.00027% fanout 1 input 1 rows

{ hash filler

wait time 1.5e-05% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 4.8e-05% fanout 231715 input 1 rows

RDF_QUAD_POGS 2.3e+05 rows(s_1_14_t0.S)

 P = ##type , O = #/ProductType

time 0.0036% fanout 2 input 231715 rows

Stage 2

time 0.003% fanout 0 input 5.56116e+06 rows

 D2.1.5 – v. 1.0

Page 35

Sort hf 39 replicated 2.3e+05 rows(s_1_14_t0.S)

}

}

time 0.24% fanout 1 input 1 rows

{ hash filler

wait time 0.0016% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 0.00026% fanout 630000 input 1 rows

RDF_QUAD_POGS 3.5e+07 rows(s_1_14_t6.S)

 P = #/country , O = ##JP

time 0.42% fanout 2 input 7.72273e+07 rows

Stage 2

time 0.73% fanout 0 input 1.85346e+09 rows

Sort hf 56 replicated 3.5e+07 rows(s_1_14_t6.S)

}

}

time 0.12% fanout 1 input 1 rows

{ hash filler

wait time 0.00067% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 0.00013% fanout 630000 input 1 rows

RDF_QUAD_POGS 1.5e+07 rows(s_1_14_t3.S)

 P = #/country , O = ##AT

time 0.19% fanout 2 input 3.86109e+07 rows

Stage 2

time 0.33% fanout 0 input 9.2666e+08 rows

Sort hf 73 replicated 1.5e+07 rows(s_1_14_t3.S)

}

}

Subquery 79

{

time 5e-08% fanout 1 input 1 rows

time 7.5e-05% fanout 1 input 1 rows

{ fork

time 6.3e-07% fanout 1 input 1 rows

{ fork

wait time 4.1e-05% of exec real time, fanout 0

QF {

time 0.0015% fanout 0 input 0 rows

Stage 1

time 1% fanout 185530 input 384 rows

 D2.1.5 – v. 1.0

Page 36

RDF_QUAD 8.6e+08 rows(s_1_14_t2.O, s_1_14_t2.S)

 inlined P = #/producer

hash partition+bloom by 77 (tmp)hash join merged if unique card 0.025 -> ()

time 0.0028% fanout 1 input 7.12435e+07 rows

Hash source 73 0.025 rows(cast) -> ()

time 1.3% fanout 10.0027 input 7.12435e+07 rows

RDF_QUAD_POGS 29 rows(s_1_14_t4.S, s_1_14_t4.O)

 P = #/reviewFor , O = k_s_1_14_t2.S

time 38% fanout 0.952667 input 7.12624e+08 rows

Stage 2

time 32% fanout 0.0999923 input 7.12624e+08 rows

RDF_QUAD 1 rows(s_1_14_t5.O)

 inlined P = ##reviewer , S = q_s_1_14_t4.S

hash partition+bloom by 60 (tmp)hash join merged if unique card 0.059 -> ()

time 0.0059% fanout 1 input 7.1257e+07 rows

Hash source 56 0.059 rows(cast) -> ()

time 2.8% fanout 1 input 7.1257e+07 rows

Stage 3

time 3.4% fanout 7 input 7.1257e+07 rows

RDF_QUAD 7.9 rows(s_1_14_t1.O)

 inlined P = ##type , S = q_q_s_1_14_t2.S

hash partition+bloom by 43 (tmp)hash join merged if unique card 0.8 -> ()

time 0.065% fanout 1 input 4.98799e+08 rows

Hash source 39 0.8 rows(cast) -> ()

After code:

 0: s_1_14_t0.S := := artm s_1_14_t1.O

 4: BReturn 0

time 19% fanout 0.992588 input 4.98799e+08 rows

Stage 4

time 0.49% fanout 0 input 4.98799e+08 rows

Sort (q_s_1_14_t0.S) -> (inc)

}

}

wait time 0% of exec real time, fanout 0

QF {

time 0.00038% fanout 603.424 input 384 rows

group by read node

(s_1_14_t0.S, aggregate)

After code:

 0: productType := := artm s_1_14_t0.S

 4: reviewCount := := artm aggregate

 8: BReturn 0

 D2.1.5 – v. 1.0

Page 37

time 8.1e-06% fanout 1 input 231715 rows

Subquery Select(productType, reviewCount)

time 0.0054% fanout 0 input 231715 rows

Precode:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

productType -> __ID2In -> __id2in

}

 2: BReturn 0

Sort (reviewCount, __id2in)

time 1.1e-08% fanout 0 input 0 rows

 ssa iterator

time 2.8e-05% fanout 9.32249 input 369 rows

top order by read (__id2in, reviewCount)

time 9.9e-06% fanout 0 input 3440 rows

 qf select node output: (__id2in, reviewCount)

}

}

time 7.6e-05% fanout 10 input 1 rows

 cl fref read

 output: (__id2in, reviewCount)

order: 1 desc 0

After code:

 0: productType := := artm __id2in

 4: reviewCount := := artm reviewCount

 8: BReturn 0

time 1.8e-08% fanout 0 input 10 rows

Subquery Select(productType, reviewCount)

}

After code:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

reviewCount -> __RO2SQ -> reviewCount

productType -> __RO2SQ -> productType

}

 2: BReturn 0

time 3.3e-08% fanout 0 input 10 rows

Select (productType, reviewCount)

 D2.1.5 – v. 1.0

Page 38

}

sparql {#Q3

 prefix bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

 prefix bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

 prefix rev: <http://purl.org/stuff/rev#>

 prefix dc: <http://purl.org/dc/elements/1.1/>

 prefix xsd: <http://www.w3.org/2001/XMLSchema#>

 Select ?product (xsd:float(?monthCount)/?monthBeforeCount As ?ratio)

 {

 { Select ?product (count(?review) As ?monthCount)

 {

 ?review bsbm:reviewFor ?product .

 ?review dc:date ?date .

 Filter(?date >= "2007-12-22"^^<http://www.w3.org/2001/XMLSchema#date> && ?date < "2008-01-

19"^^<http://www.w3.org/2001/XMLSchema#date>)

 }

 Group By ?product

 } {

 Select ?product (count(?review) As ?monthBeforeCount)

 {

 ?review bsbm:reviewFor ?product .

 ?review dc:date ?date .

 Filter(?date >= "2007-11-24"^^<http://www.w3.org/2001/XMLSchema#date> && ?date < "2007-12-

22"^^<http://www.w3.org/2001/XMLSchema#date>) #

 }

 Group By ?product

 Having (count(?review)>0)

 }

 }

 Order By desc(xsd:float(?monthCount) / ?monthBeforeCount) ?product

 Limit 10

} {

time 4.5e-08% fanout 1 input 1 rows

time 0.00014% fanout 1 input 1 rows

{ hash filler

wait time 0.55% of exec real time, fanout 0

QF {

time 5.1e-05% fanout 0 input 0 rows

Stage 1

time 2.3% fanout 3.70867e+07 input 384 rows

 D2.1.5 – v. 1.0

Page 39

RDF_QUAD 1.4e+10 rows(t6.S, t6.O)

 inlined P = #/reviewFor

time 23% fanout 0.0481733 input 1.42413e+10 rows

RDF_QUAD 0.016 rows()

 P = #/date , S = t6.S , O >= <tag 211 c 2007-11-24> < <tag 211 c 2007-12-22> O >= <tag 211 c

2007-11-24> < <tag 211 c 2007-12-22>

time 4.7% fanout 0.949941 input 6.86051e+08 rows

Stage 2

time 2.4% fanout 0 input 6.86051e+08 rows

Sort (q_t6.O) -> (inc)

}

}

Subquery 77

{

time 2e-08% fanout 1 input 1 rows

time 6.4e-05% fanout 1 input 1 rows

{ fork

time 3.4e-07% fanout 1 input 1 rows

{ fork

wait time 0.89% of exec real time, fanout 0

QF {

time 0.00055% fanout 0 input 0 rows

Stage 1

time 2.4% fanout 3.70867e+07 input 384 rows

RDF_QUAD 1.4e+10 rows(s_17_4_t0.S, s_17_4_t0.O)

 inlined P = #/reviewFor

time 23% fanout 0.0600904 input 1.42413e+10 rows

RDF_QUAD 0.018 rows()

 P = #/date , S = s_17_4_t0.S , O >= <tag 211 c 2007-12-22> < <tag 211 c 2008-01-19> O >= <tag

211 c 2007-12-22> < <tag 211 c 2008-01-19>

time 6% fanout 0.948689 input 8.55765e+08 rows

Stage 2

time 3.3% fanout 0 input 8.55765e+08 rows

Sort (set_no, q_s_17_4_t0.O) -> (inc)

}

}

wait time 11% of exec real time, fanout 0

QF {

time 1.7e-06% fanout 0 input 0 rows

Stage 1

time 0.13% fanout 986742 input 384 rows

group by read node

(gb_set_no, s_17_4_t0.O, aggregate)

 D2.1.5 – v. 1.0

Page 40

After code:

 0: product := := artm s_17_4_t0.O

 4: monthCount := := artm aggregate

 8: BReturn 0

time 0.0033% fanout 1 input 6.09854e+08 rows

Subquery Select(product, monthCount)

time 0.42% fanout 1 input 6.09854e+08 rows

Stage 2

time 0.85% fanout 0.422257 input 6.09854e+08 rows

Hash source 54 1 rows(q_product) -> (monthBeforeCount)

time 0.046% fanout 1 input 2.57515e+08 rows

Precode:

 0: product := := artm product

 4: BReturn 0

END Node

After test:

 0: if (product = product) then 4 else 5 unkn 5

 4: BReturn 1

 5: BReturn 0

time 31% fanout 0 input 2.57515e+08 rows

Precode:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

product -> __RO2SQ -> __ro2sq

}

 2: _cvt := Call _cvt (<constant>, monthCount)

 7: temp := artm _cvt / monthBeforeCount

 11: BReturn 0

Sort (temp, __ro2sq)

time 9.7e-09% fanout 0 input 0 rows

 ssa iterator

time 2.1e-06% fanout 10 input 24 rows

top order by read (__ro2sq, temp)

time 1.1e-06% fanout 0 input 240 rows

 qf select node output: (temp, __ro2sq, set_no)

}

}

time 8.9e-05% fanout 10 input 1 rows

 cl fref read

 output: (temp, __ro2sq, set_no)

order: 2 0 desc 1

 D2.1.5 – v. 1.0

Page 41

After code:

 0: product := := artm __ro2sq

 4: ratio := := artm temp

 8: BReturn 0

time 1.2e-08% fanout 0 input 10 rows

Subquery Select(product, ratio)

}

After code:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

ratio -> __RO2SQ -> ratio

product -> __RO2SQ -> product

}

 2: BReturn 0

time 8.3e-09% fanout 0 input 10 rows

Select (product, ratio)

}

sparql {#Q8

 prefix bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

 prefix bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

 prefix xsd: <http://www.w3.org/2001/XMLSchema#>

 Select ?vendor (xsd:float(?belowAvg)/?offerCount As ?cheapExpensiveRatio)

 {

 { Select ?vendor (count(?offer) As ?belowAvg)

 {

 { ?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/ProductType4> .

 ?offer bsbm:product ?product .

 ?offer bsbm:vendor ?vendor .

 ?offer bsbm:price ?price .

 { Select ?product (avg(?price) As ?avgPrice)

 {

 ?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/ProductType4> .

 ?offer bsbm:product ?product .

 ?offer bsbm:price ?price .

 }

 Group By ?product

 }

 } .

 FILTER (?price < ?avgPrice)

 D2.1.5 – v. 1.0

Page 42

 }

 Group By ?vendor

 }

 { Select ?vendor (count(?offer) As ?offerCount)

 {

 ?product a <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/ProductType4> .

 ?offer bsbm:product ?product .

 ?offer bsbm:vendor ?vendor .

 }

 Group By ?vendor

 }

 }

 Order by desc(xsd:float(?belowAvg)/?offerCount) ?vendor

 limit 10

} {

time 1.3e-09% fanout 1 input 1 rows

time 9.6e-05% fanout 1 input 1 rows

{ hash filler

wait time 0.13% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 0.00027% fanout 1.351e+07 input 1 rows

RDF_QUAD_POGS 1e+08 rows(t12.S)

 P = ##type , O = #/ProductType4

time 0.15% fanout 0.0834747 input 1.27187e+08 rows

Stage 2

time 0.32% fanout 20.0004 input 1.27187e+08 rows

RDF_QUAD_POGS 13 rows(t13.S)

 P = #/product , O = lcast

time 1.9% fanout 0.963308 input 2.5438e+09 rows

Stage 3

time 21% fanout 1 input 2.5438e+09 rows

RDF_QUAD 1 rows(t14.O)

 inlined P = #/vendor , S = q_t13.S

time 29% fanout 0.999996 input 2.5438e+09 rows

Stage 4

time 0.74% fanout 0 input 2.5438e+09 rows

Sort (q_t14.O) -> (inc)

}

}

time 2.6e-05% fanout 1 input 1 rows

{ hash filler

 D2.1.5 – v. 1.0

Page 43

wait time 6.7% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 0.00023% fanout 1.401e+07 input 1 rows

RDF_QUAD_POGS 1e+08 rows(t8.S)

 P = ##type , O = #/ProductType4

time 0.077% fanout 0.0834747 input 1.27187e+08 rows

Stage 2

time 0.22% fanout 20.0004 input 1.27187e+08 rows

RDF_QUAD_POGS 13 rows(t9.S)

 P = #/product , O = lcast

time 1.2% fanout 0.984298 input 2.5438e+09 rows

Stage 3

time 34% fanout 1 input 2.5438e+09 rows

RDF_QUAD 1 rows(t10.O)

 inlined P = #/price , S = q_t9.S

time 9.3% fanout 1 input 2.5438e+09 rows

Precode:

 0: temp := artm t10.O + 0

 4: BReturn 0

Stage 4

time 2.3% fanout 0 input 2.5438e+09 rows

Sort (q_q_q_t8.S) -> (temp, inc)

}

}

Subquery 145

{

time 3e-09% fanout 1 input 1 rows

time 2.6e-07% fanout 1 input 1 rows

{ fork

time 3.5e-08% fanout 1 input 1 rows

{ fork

wait time 0.00018% of exec real time, fanout 0

QF {

time 0% fanout 0 input 0 rows

Stage 1

time 7.5e-09% fanout 0 input 1 rows

RDF_QUAD_POGS 1e+08 rows(s_22_16_t3.S)

 P = ##type , O = #/ProductType4

hash partition+bloom by 143 ()

time 0% fanout 0 input 0 rows

Stage 2

 D2.1.5 – v. 1.0

Page 44

time 0% fanout 0 input 0 rows

Hash source 122 1 rows(q_s_22_16_t3.S) -> (a15, a16)

time 0% fanout 0 input 0 rows

Precode:

 0: product := := artm s_22_16_t3.S

 4: temp := artm a15 / a16

 8: BReturn 0

END Node

After test:

 0: if (s_22_16_t3.S = product) then 4 else 5 unkn 5

 4: BReturn 1

 5: BReturn 0

time 0% fanout 0 input 0 rows

RDF_QUAD_POGS 13 rows(s_22_16_t4.S)

 P = #/product , O = k_q_s_22_16_t3.S

time 0% fanout 0 input 0 rows

Stage 3

time 0% fanout 0 input 0 rows

RDF_QUAD 1 rows(s_22_16_t5.S, s_22_16_t5.O)

 inlined P = #/vendor , S = q_s_22_16_t4.S

time 0% fanout 0 input 0 rows

RDF_QUAD 0.31 rows()

 P = #/price , S = k_s_22_16_t5.S , O < k_q_temp O < k_q_temp

time 0% fanout 0 input 0 rows

Stage 4

time 0% fanout 0 input 0 rows

Sort (set_no, q_s_22_16_t5.O) -> (inc)

}

}

wait time 0.00059% of exec real time, fanout 0

QF {

time 9.1e-08% fanout 0 input 0 rows

Stage 1

time 2.5e-07% fanout 0 input 384 rows

group by read node

(gb_set_no, s_22_16_t5.O, aggregate)

After code:

 0: vendor := := artm s_22_16_t5.O

 4: belowAvg := := artm aggregate

 8: BReturn 0

time 0% fanout 0 input 0 rows

Subquery Select(vendor, belowAvg)

 D2.1.5 – v. 1.0

Page 45

time 0% fanout 0 input 0 rows

Stage 2

time 0% fanout 0 input 0 rows

Hash source 61 1 rows(q_vendor) -> (offerCount)

time 0% fanout 0 input 0 rows

Precode:

 0: vendor := := artm vendor

 4: BReturn 0

END Node

After test:

 0: if (vendor = vendor) then 4 else 5 unkn 5

 4: BReturn 1

 5: BReturn 0

time 0% fanout 0 input 0 rows

Precode:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

vendor -> __RO2SQ -> __ro2sq

}

 2: _cvt := Call _cvt (<constant>, belowAvg)

 7: temp := artm _cvt / offerCount

 11: BReturn 0

Sort (temp, __ro2sq)

time 9.2e-10% fanout 0 input 0 rows

 ssa iterator

time 0% fanout 0 input 0 rows

top order by read (__ro2sq, temp)

time 0% fanout 0 input 0 rows

 qf select node output: (temp, __ro2sq, set_no)

}

}

time 6.4e-07% fanout 0 input 1 rows

 cl fref read

 output: (temp, __ro2sq, set_no)

order: 2 0 desc 1

After code:

 0: vendor := := artm __ro2sq

 4: cheapExpensiveRatio := := artm temp

 8: BReturn 0

time 0% fanout 0 input 0 rows

 D2.1.5 – v. 1.0

Page 46

Subquery Select(vendor, cheapExpensiveRatio)

}

After code:

 0: QNode {

time 0% fanout 0 input 0 rows

dpipe

cheapExpensiveRatio -> __RO2SQ -> cheapExpensiveRatio

vendor -> __RO2SQ -> vendor

}

 2: BReturn 0

time 0% fanout 0 input 0 rows

Select (vendor, cheapExpensiveRatio)

}

Appendix B – Virtuoso Configuration Files
Following are the configuration files for the system. The files are identical for each process, except that even

numbered processes have different affinity settings in virtuoso.global.ini.

$ cat cluster.ini

[Cluster]

Master = Host1

ThisHost = Host1

[ELASTIC]

Slices = 16

Segment1 = 1024, cl1/cl1_1.db = q1, cl1/cl1_2.db = q2, cl1/cl1_3.db = q3, cl1/cl1_4.db = q4

[gast749@stones04 01]$ cat cluster.global.ini

[Cluster]

Threads = 200

Master = Host1

ReqBatchSize = 10000

BatchesPerRPC = 4

BatchBufferBytes = 20000

LocalOnly = 2

MaxKeepAlivesMissed = 2000

Host1 = 192.168.64.220:22101

Host2 = 192.168.64.220:22102

Host3 = 192.168.64.221:22103

Host4 = 192.168.64.221:22104

Host5 = 192.168.64.222:22105

Host6 = 192.168.64.222:22106

 D2.1.5 – v. 1.0

Page 47

Host7 = 192.168.64.223:22107

Host8 = 192.168.64.223:22108

Host9 = 192.168.64.224:22109

Host10 = 192.168.64.224:22110

Host11 = 192.168.64.225:22111

Host12 = 192.168.64.225:22112

Host13 = 192.168.64.219:22113

Host14 = 192.168.64.219:22114

Host15 = 192.168.64.228:22115

Host16 = 192.168.64.228:22116

Host17 = 192.168.64.217:22117

Host18 = 192.168.64.217:22118

Host19 = 192.168.64.230:22119

Host20 = 192.168.64.230:22120

Host21 = 192.168.64.231:22121

Host22 = 192.168.64.231:22122

Host23 = 192.168.64.232:22123

Host24 = 192.168.64.232:22124

[gast749@stones04 01]$ cat virtuoso.ini

; virtuoso.ini

;

; Configuration file for the OpenLink Virtuoso VDBMS Server

;

;

; Database setup

;

[Database]

DatabaseFile = virtuoso.db

TransactionFile = virtuoso.trx

ErrorLogFile = virtuoso.log

ErrorLogLevel = 7

Syslog = 0

TempStorage = TempDatabase

FileExtend = 200

Striping = 0

[TempDatabase]

DatabaseFile = virtuoso.tdb

TransactionFile = virtuoso.ttr

FileExtend = 200

;

; Server parameters

;

[Parameters]

 D2.1.5 – v. 1.0

Page 48

ServerPort = 12201

ServerThreads = 100

CheckpointSyncMode = 2

CheckpointInterval = 0

NumberOfBuffers = 10000000

MaxDirtyBuffers = 8000000

MaxCheckpointRemap = 5000000

DefaultIsolation = 2

UnremapQuota = 0

AtomicDive = 1

PrefixResultNames = 0

CaseMode = 2

DisableMtWrite = 0

;MinAutoCheckpointSize = 4000000

;CheckpointAuditTrail = 1

DirsAllowed = /

PLDebug = 0

TestCoverage = cov.xml

;Charset=ISO-8859-1

ResourcesCleanupInterval = 1

ThreadCleanupInterval = 1

TransactionAfterImageLimit = 1500000000

FDsPerFile = 4

;StopCompilerWhenXOverRunTime = 1

MaxMemPoolSize = 40000000

AdjustVectorSize = 1

ThreadsPerQuery = 16

AsyncQueueMaxThreads = 24

IndexTreeMaps = 64

[VDB]

VDBDisconnectTimeout = 1000

ArrayOptimization = 2

NumArrayParameters = 10

[Client]

SQL_QUERY_TIMEOUT = 0

SQL_TXN_TIMEOUT = 0

SQL_ROWSET_SIZE = 10

SQL_PREFETCH_BYTES = 12000

[AutoRepair]

BadParentLinks = 0

BadDTP = 0

 D2.1.5 – v. 1.0

Page 49

[Replication]

ServerName = VIRTUOSO_CLUSTER

ServerEnable = 1

[HTTPServer]

ServerPort = 8892

ServerRoot = ../vsp

ServerThreads = 40

MaxKeepAlives = 10

KeepAliveTimeout = 10

MaxCachedProxyConnections = 10

ProxyConnectionCacheTimeout = 10

DavRoot = DAV

HTTPLogFile = logs/http28082014.log

[!URIQA]

DefaultHost = lod.openlinksw.com

[SPARQL]

;ExternalQuerySource = 1

;ExternalXsltSource = 1

ResultSetMaxRows = 100000

;DefaultGraph = http://localhost:8892/dataspace

;MaxQueryCostEstimationTime = 120 ; in seconds

MaxQueryExecutionTime = 0 ; in seconds

ExecutionTimeout = 0 ; in seconds

LabelInferenceName = facets

ImmutableGraphs = inference-graphs, *

ShortenLongURIs = 1

;EnablePstats = 0

[gast749@stones04 01]$ cat virtuoso.global.ini

[Parameters]

MaxQueryMem = 30G

MaxVectorSize = 500000

Affinity = 1-7 16-23

ListenerAffinity = 0

HashJoinSpace = 10G

[Flags]

hash_join_enable = 2

dfg_max_empty_mores = 10000

dfg_empty_more_pause_msec = 5

qp_thread_min_usec = 100

cl_dfg_batch_bytes = 20000000

enable_high_card_part = 1

 D2.1.5 – v. 1.0

Page 50

enable_vec_reuse = 1

mp_local_rc_sz = 0

dbf_explain_level = 0

enable_feed_other_dfg = 0

;enable_cll_nb_read = 1

dbf_no_sample_timeout = 1

enable_subscore = 0

;enable_cl_compress = 1

enable_conn_fifo = 0

enable_mt_transact = 1

enable_mt_txn = 0

iri_seqs_used = 3

enable_small_int_part = 1

dbf_max_itc_samples = 1

enable_dt_hash = 1

[gast749@stones04 01]$

The even numbered server affinity lines are:

[gast749@stones04 01]$ fgrep Affinity ../02/virtuoso.global.ini

Affinity = 9-15 24-31

ListenerAffinity = 8

 D2.1.5 – v. 1.0

Page 51

References

[BSBM] http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/

[BIBM] https://sourceforge.net/projects/bibm/

[BSBM 500B Results] https://dl.dropboxusercontent.com/u/106414290/bsbm-500B-triple-results.zip

[Virtuoso Colum Store] http://sites.computer.org/debull/A12mar/vicol.pdf

[Virtuoso TPC-H Blog Series] http://www.openlinksw.com/weblog/oerling/?id=1739

[LOD2 Final: The 500 Giga-triples Blog] http://www.openlinksw.com/weblog/oerling/?id=1805

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/
https://sourceforge.net/projects/bibm/
https://dl.dropboxusercontent.com/u/106414290/bsbm-500B-triple-results.zip
http://sites.computer.org/debull/A12mar/vicol.pdf
http://www.openlinksw.com/weblog/oerling/?id=1739
http://www.openlinksw.com/weblog/oerling/?id=1805

