
Configuring Virtuoso for Scale
Table of Contents

Background
Structure of a Virtuoso Installation
Operation
Configuration Options

Analysis
Default
Embedded / Minimal

Comparison with LAMP
Enterprise-wide
References

Background

OpenLink Virtuoso is an engine of many features. It incorporates a database engine, Web
server, RDF quad-store, SPARQL processor, and the OpenLink Data Spaces (ODS) suite of
applications for bookmarks, briefcase, wiki, webmail, etc.

Naturally, each of these features has its dependencies and consequences for resource usage, be
that in-memory or on disk.

Here we present an overview of 3 possible configurations for Virtuoso.

For comparison, we use Virtuoso Open-Source Edition (VOS) compiled on Debian GNU/Linux
("Testing" distribution).

Structure of a Virtuoso Installation

A typical Virtuoso installation comprises the following files/areas:

Directory Description Files Size

/usr/bin/
Vital operating
binaries for server and
command-line client

virtuoso-t
isql-v
isql-vw

9.2
M

/usr/share/virtuoso/vad/

ODS and other
packages
(rdf_mappers/sponger,
tutorial, demo,
isparql, etc.)

rdf_mappers_dav.vad
doc_dav.vad

131
M

/usr/lib/
client drivers for
ODBC & JDBC

jdbc-
2.0/virtjdbc*.jar
virtodbc*.so

12
M

/usr/lib/virtuoso/hosting/
Runtime loadable
plugins for hosting
and wiki markup

wikiv.so
mediawiki.so
creolewiki.so

3.6
M

/var/lib/virtuoso/vsp/
Splash-page for top-
level web interface

vsp/
vsmx/
images/
frames/
css/
index.html
etc.

1.5
M

/usr/share/doc/virtuoso-
opensource/

Misc README data
for OS platform

README.Debian
README.CVS.gz
etc.

128
K

/usr/lib/jena/
Java class modules for
using Virtuoso from
Jena

virt_jena.jar
56
K

/usr/lib/sesame/
Java class modules for
using Virtuoso from
Sesame

virt_sesame2.jar
56
K

/var/lib/virtuoso/db
Default database
directory

virtuoso.ini
virtuoso.db

12
M

Operation

When the server is run against a given .ini file, it looks for a database at the name and location
specified in that file. If none is found, the server will create an empty database with minimal
system schema.

If it finds an appropriate directory containing *.vad files (set in the virtuoso.ini file during
`make install'), Virtuoso will install the Conductor package by default.

From there on, the Virtuoso administrator is expected to use the Conductor,
<http://localhost:8890/conductor/>, to install further packages such as the ODS application
suite, etc.

After a checkpoint, a virtuoso.db file forms a portable unit encapsulating the entirety of a
database instance, and can be moved between servers, so you can implement custom
applications and schemas using the client interfaces (SQL/ODBC/JDBC) and avoid installing
any of the packages, even the Conductor, should you so desire.

Configuration Options

The following parameters in a virtuoso.ini file defining a Virtuoso instance control the resource
consumption and performance:

[Database]

DatabaseFile virtuoso.db
Filename of
database file docs

FileExtend 200

The amount of
8K-sized pages
by which the
database file
automatically
grows when the
current file is not
large enough.

docs

MaxCheckpointRemap 2000

Controls how
many pages may
be stored other
than their logical
page during
checkpoints

docs

Striping 0
Enables the
database file-
striping
mechanism

docs

[Parameters]

ServerThreads 20

maximum
number of
threads
(SQL+HTTP)
used in the server
- should be close
to the number of
concurrent
connections

docs

CheckpointInterval 60

interval (minutes)
at which Virtuoso
will
automatically
make a database
checkpoint

docs

NumberOfBuffers 2000

controls the
amount of RAM
(8K pages) used
by Virtuoso to
cache database
files

docs

MaxDirtyBuffers 1200

The maximum
number of
modified buffers
to store before
writing

MaxStaticCursorRows 5000
the maximum
number of rows
returned by a docs

static cursor

FreeTextBatchSize 100000

the amount of
text data
processed in one
batch of the free-
text index during
batch reindexing

docs

[HTTPServer]

ServerThreads 10

Maximum
concurrent HTTP
sessions; must be
less than the
overall database
ServerThreads

docs

MaxKeepAlives 10

A maximum
number of HTTP
sockets with
KeepAlive
connections

docs

KeepAliveTimeout 10
Timeout (s)
before an idle
HTTP connection
is closed

docs

HTTPThreadSize 280000

Stack-size of an
HTTP thread for
handling
connection and
processing

docs

[Striping]

Segment1 100M, db-seg1-1.db, db-
seg1-2.db

Segment-
specification for
disk-striping

docs

Segment2 100M, db-seg2-1.db
[SPARQL]

ResultSetMaxRows 100000
Maximum
number of rows
in a SPARQL
resultset

docs

[Plugins]

LoadPath /usr/lib/virtuoso/hosting
Directory in
which to search
for plugins

docs

Load1 plain, wikiv Main ODS-Wiki
markup parser

Load2 plain, mediawiki

Auxilliary
MediaWiki
markup parser

Load2 plain, mediawiki
module for ODS-
Wiki

Load3 plain, creolewiki
Auxilliary Creole
wiki markup
parser module for
ODS-Wiki

Load4 plain, im
ImageMagick
plugin used by
ODS-Gallery

Load5 plain, wbxml2
WbXML plugin
used by the
SyncML package

Load6 plain, hslookup
Required for
some Sponger
Cartridge
operations

Load7 Hosting, hosting_php.so
Module for
hosting PHP
scripts within
Virtuoso

;Load8 Hosting,hosting_perl.so

Module for
hosting Perl
scripts within
Virtuoso
(unsupported at
present)

;Load9 Hosting,hosting_python.so

Module for
hosting Python
scripts within
Virtuoso
(unsupported at
present)

;Load10 Hosting,hosting_ruby.so

Module for
hosting Ruby
scripts within
Virtuoso
(unsupported at
present)

;Load11 msdtc,msdtc_sample
For Microsoft
XA transaction
support

Notes:

Striping is an obvious way to control the amount of disk-space used; by default, striping
is off (0) so the [Striping] section does not come into play.
The checkpoint-interval setting is simply the amount of time for which a temporary
database will grow before being checkpointed into the main virtuoso.db file, so a choice is

scenario-dependent; for a given incoming transaction rate, a short interval will give
frequent smaller checkpoints while specifying a longer interval will make fewer, slower,
checkpoints.
The numbers of threads in the database engine as a whole and specifically allocated to the
HTTP server will control performance, and each thread will cost a given amount of
memory also.
Naturally you can disable any or all unused plugins for further reduce the memory
footprint; for example, if not running ODS-Wiki, you can remove the wikiv, mediawiki
and creolewiki plugins.

We have a documentation page on tuning Virtuoso for RDF usage.

Analysis

Virtuoso provides the status() command, which may be executed through the SQL
interface (e.g., isql-v(1)).

The resultset from this command is documented here, but we highlight specifically
consideration of the NumberOfBuffers parameter; from status() output you will see
how many buffers the server is actually using so you can tailor the allocated number
accordingly.

Default

By default, the Debian virtuoso-opensource package enables all possible hosting options except
Mono.

package .deb 58 M
server binary, /usr/bin/virtuoso-t 8.3 M
default database with Conductor installed 37 M
Virtual memory allocation 354 M
Resident memory used 125 M

Embedded / Minimal

The minimum that is required to run Virtuoso is the server executable (virtuoso-t, or in
commercial edition, virtuoso-iodbc-t) compiled with as few options as possible, and
the virtuoso.ini file. From there, the first time the server is run against the
virtuoso.ini, it will create the empty database (virtuoso.db) with minimal schema.

The most important parameter to consider when optimizing for size is NumberOfBuffers.

By applying a few changes to virtuoso.ini, one can quite dramatically reduce the
memory footprint:

[Database]
FileExtend = 100 ; down from 200

MaxCheckpointRemap = 1000 ; down from 2000

[TempDatabase]
MaxCheckpointRemap = 1000 ; down from 2000

[Parameters]
ServerThreads = 5 ; down from 10
CheckpointInterval = 10 ; down from 60
NumberOfBuffers = 100 ; down from 2000
MaxDirtyBuffers = 50 ; down from 1200
SchedulerInterval = 5 ; down from 10
FreeTextBatchSize = 1000 ; down from 100000

[HTTPServer]
ServerThreads = 2 ; down from 5
KeepAliveTimeout = 5 ; down from 10
HTTPThreadSize = 10000 ; down from 280000

[Client]
SQL_PREFETCH_ROWS = 10 ; down from 100
SQL_PREFETCH_BYTES = 4096 ; down from 16000

[Replication]
ServerEnable = 0 ; changed from 1

[Zero Config]
;ServerName = virtuoso (SAUCE) ; commented-out

[SPARQL]
ResultSetMaxRows = 10000 ; down from 100000

[Plugins]
; ... ; comment-out all
plugins

Result:

default empty database with no Conductor installed 12M
Virtual memory allocation 150M
Resident memory used 70M

Executing status() shows that 1000 buffers are allocated and only 270 are in use.

Comparison with LAMP

On the same machine, we installed Apache 2.x and MySQL 5.0 server using standard Debian
GNU/Linux packages:

bash$ sudo apt-get install mysql-server apache2

This is not quite comparing like with like; Virtuoso includes not only HTTP and SQLinterfaces,
but also a complete RDF Quad-store, SPARQL processor, free-text indexer, etc. However, out-
of-the-box MySQL and Apache consumptions compare to the above-tuned Virtuoso as follows:

Apache MySQL Virtuoso
package *.deb 45.6 M - 58 M
server binary 0.3 M 7 M 8.3 M
default empty database - 21 M 12 M
virtual memory allocation 229 M 123 M 350 M
resident memory usage 2.8 M 15 M 70 M

Enterprise-wide

In larger installations, the NumberOfBuffers parameter should be increased, but there is no
point in making the process so large it has to swap. Therefore we recommend about 60%
memory should be allocated to buffers.

As an example, we consider two instances: our own web-server, www.openlinksw.com
(running on Debian GNU/Linux), and DBpedia.org (running on Sun Solaris).

www DBpedia
Virtual memory allocated 2734M 6257M
Resident memory 662M (65%) 6216M (38%)
Striping 0 0
CheckpointInterval 120 60
NumberOfBuffers 20000, 18511 used 100000, 99964 used
MaxDirtyBuffers 8000 40000
MaxCheckpointRemap 16000 80000
FreeTextBatchSize 100000 100000
ServerThreads 10 1000
HTTP ServerThreads 250 100
HTTPThreadSize 280000 10000000
Plugins only wikiv wikiv, imagemagick, wbxml2
SPARQL ResultSetMaxRows 1000 1000

References

Virtuoso performance diagnostics
Virtuoso performance tuning

