
LUBM and Virtuoso
Introduction

This article discusses Virtuoso's performance of the Lehigh University Benchmark (LUBM) at
different scales and in different configurations.

We analyze the performance of Virtuoso in both single-server and clustered configurations for
loading and querying a derivative of the LUBM data set.

The goal of this article is to give a general understanding of Virtuoso's triple-store performance
and governing factors.

The Data Set

We use the unmodified LUBM synthetic data set at different scales. The basic query timing is
done with the qualification data set of about 100K triples. Tests with concurrent queries are
performed at the scales of 800, 8000 and 160,000 universities, corresponding roughly to 100M,
1G and 20G triples.

We have adapted the original LUBM benchmark queries to Virtuoso and verified that when
applied to the qualification data set the correct answers are produced.

Aside storage and query, the LUBM benchmark involves simple inference on RDF data. Some
of this inference can be done at either load or query time. Some of the inference must be done
after loading because this is not supported at query time.

We always materialize the transitive suborganization relation, so that a suborganization
triple is always present between all direct and indirect super/suborganization pairs.
Inverse relation inference is not tested. The queries are rewritten to avoid reliance on
inverse relation inference.
Subclass and subproperty inference may be done either at query or load time. We
experiment with both.
The benchmark does not involve owl:same-as. Virtuoso's query-time support for
owl:same-as is not used.

The Queries and Metric

The queries exist in three variants:

1. Open Coded Inference. All combinations of subclass and subproperty relations are
expressed as unions.

2. Inference using Virtuoso's query-time support of subclass and subproperty.

3. Materialized data where all triples implied by subclass and subproperty relations are
physically present.

The original LUBM involves a composite metric of speed and completeness of inference. We
produce complete results in all cases but vary the time and mode of inference.

We measure load rates as Kt/s, with 1Kt/s being 1000 triples per second of real time.

We give times for single user query execution against the one university qualification
database. These times are in milliseconds.
For concurrent query load, we have defined a query mix consisting of the 14 LUBM
queries, modified when necessary so as not to return excessive volumes of data. The
metric is queries per second at scale, where scale is the number of universities. Each
query belonging to a completed query mix is counted as one query. Only queries from
query mixes completed during the measurement interval are counted.

All queries are modified so as to be scoped to a single university. The rationale is that queries
that read through the whole database will be by far the longest in duration and hence the
benchmark would measure only these if these were included in the mix. A mix with orders of
magnitude between longest and shortest might as well not include the shorter queries.

Query Mix

The adapted query mix is shown below. We only show the version that runs against the
materialized data. The other mixes are similarly modified. The mixes run against the
qualification database are listed in all three variants in the appendix.

 /* Q1 */
select * from <lubm where
{{ ?x rdf:type ub:GraduateStudent . ?x ub:takesCourse <%s> };
 /* Q2 */
select * from <lubm where
 {{ ?x a ub:GraduateStudent . ?z a ub:Department . ?x
ub:memberOf ?z . ?z ub:subOrganizationOf <%s> . ?x
ub:undergraduateDegreeFrom <%s> }
 /* Q3 */
select * from <lubm where
 {{ ?x a ub:Publication . ?x ub:publicationAuthor <%s> }
 /* Q4 */
select * from <lubm where
 {{ ?x a ub:Professor . ?x ub:worksFor <%s> . ?x ub:name ?y1 . ?
x ub:emailAddress ?y2 . ?x ub:telephone ?y3 . };
 /* Q5 */
select * from <lubm where
 {{ ?x a ub:Person . ?x ub:memberOf <%s> };
 /* Q6 */
select * from <lubm where
 {{ ?x a ub:Student . ?x ub:memberOf <%s> };
 /* Q7 */
select * from <lubm where

 {{ ?x a ub:Student . ?y a ub:Course . <%s> ub:teacherOf ?y . ?x
ub:takesCourse ?y . };
 /* Q8 */
select * from <lubm where
 {{ ?x a ub:Student . ?y a ub:Department . ?x ub:memberOf ?y . ?
y ub:subOrganizationOf <%s> . ?x ub:emailAddress ?z };
 /* Q9 */
select * from <lubm where
 {{ ?x a ub:Student . ?y a ub:Faculty . ?z a ub:Course . ?x
ub:advisor ?y . ?x ub:takesCourse ?z . ?y ub:teacherOf ?z . ?x
ub:memberOf <%s> . }
 /* Q10 */
select * from <lubm where
 {{ ?x a ub:Student . ?x ub:takesCourse <%s> . };
 /* Q11 */
select * from <lubm where
 { ?x a ub:ResearchGroup . ?x ub:subOrganizationOf <%s> . };
 /* Q12 */
select * from <lubm where
 {{ ?x a ub:Professor . ?y a ub:Department . ?x ub:headOf ?y . ?
y ub:subOrganizationOf <%s> . };
 /* Q13 */
select count (*) from <lubm where
 { ?x a ub:Person . ?x ub:degreeFrom <%s> . }
 /* Q14 */
select * from <lubm where
{ ?x a ub:UndergraduateStudent . ?x ub:memberOf ?z . ?z
ub:subOrganizationOf <%s> . };

The %s is substituted with a randomly selected IRI of the appropriate type. Q13 is modified to
return a count because otherwise it would take all the time of the benchmark since it returns up
to 48K rows.

Database Layout

The tests are run against Virtuoso with default triple storage layout. All the data except for
schema data is loaded in a single graph. The quads are indexed as GSPO and OGPS, where the
latter is a bitmap index with all values of S for a given OGP combination represented as a
bitmap. All URI and object ids are 32-bit. An O that is an IRI or short scalar is stored inline in
the O column of the quad table. Long string-valued Os are assigned an id and referenced using
this id from the O of the quad table.

Loading

We have experimented with different ways of loading RDF data using different multithreading
schemes.

1. Loading on a single thread, with the same thread running the parser and translating the
URIs to URI id and inserting these into the quad table

2. One thread parsing a file and feeding a queue from which worker threads pick triples. The

worker threads then translate the URIs to IDs and insert the triples.
3. Cluster loading with optimization on message passing.

All loading is done without locking, transaction rollback possibility and with no roll-forward
logging. This is reasonable since this is a bulk-load activity. The loads are hardened by a
database checkpoint.

We have found that with a single server process, the best performance is obtained by running
one single threaded load function on each core, thus with 4 concurrent loads proceeding at all
times on a 4-core machine. With 8 cores, the optimum is around 6 streams.

If only a single load stream is available, some performance gain is obtained by having up to 3
worker threads for processing the output of a single parser thread.

In all cases, we avoid having threads repeatedly hit the same last page of data by giving each
thread a small pool of URI ids to allocate. Thus two threads do not generally try to write the
same page at the same time.

Tuning

On all systems, the count of database cache buffers was selected so that the Virtuoso process,
after reaching steady memory consumption, took about three-quarters the available physical
memory. In this way, a database buffer counts for about 9.5K.

When separate disks were available, if running a single server, the database was striped across
all disks. When running multiple server processes in cluster mode, each had its own disk when
available.

Besides this, no other special configuration measures were taken.

Systems Tested

The systems tested were:

System A: 2 x Xeon 5130 2GHz, 8G RAM, 6 x 160G SATA2 disk
System B: 2 x Xeon 5330 2GHz, 6 x 250G SATA2 disks

Large Load Rate

8000 Universities

System A: 29.7 Kt/s, single server, 4 streams
System B: 36.9 Kt/s

Qualification Database

We ran all versions of the queries against the qualification database of 1 university, about 100K
triples to verify that all query versions produce the same data. The total run times of the queries,
one stream at a time, warm cache, are stated below, tested on system A:

1. Unions: 1917 ms
2. Inference: 1029 ms
3. Materialized: 724 ms

With the materialized run, the set of queries performs 77,600 single row retrievals, a rate of
98,000 rows per second. This does not include lookups which find no rows. The single row
lookup rate is about 300,000 per second if there is no other query logic, for example when
joining one index of the quad table to another index on full equality, i.e. checking that the two
indices have the same content.

All three modes access the same amount of data on a warm cache. The difference is only due to
the different length of execution path in the SQL run time.

Concurrent Query Rate

We filled a database with 8000 universities and ran different numbers of clients on different
fractions of the database. Each query is scoped to a single university picked at random from the
n first universities of the 8000 university database; this ensures the total volume is the same but
the working set varies.

The queries considered here are using the built-in inference of subclasses and subproperties.
The only materialized inference is the suborganization property.

The timing results are obtained when the server has reached a steady state with the selected
number of universities. Steady state is here defined as either (1) having less than 1% of real
time in disk i/o or (2) having filled all disk cache buffers after starting with an empty cache.

The results are reported per query, taking a sample of the test driver's output.

The numbers are, for example in:

-- Q1 2 / 40 / 299 3451
0% 85 times

Query
| shortest/average /longest msec
| total msec
| percentage of total run time spent in this query
| count of times the query was run in the reported interval

100 Universities

The queries were applied against the 100 first universities of a database of 8000. This measures
memory-based performance.

1 client: 11 qps
4 clients: 31 qps
8 clients: 33.1 qps

CPU at approx 360% of 400%, less than 0.04 threads waiting for disk

Sample output from run with 4 clients:

-- Q1 1 / 2 / 12 29
0% 10 times
-- Q2 7 / 9 / 11 92
0% 10 times
-- Q3 2 / 10 / 24 104
0% 10 times
-- Q4 8 / 47 / 153 476
2% 10 times
-- Q5 0 / 6 / 16 62
0% 10 times
-- Q6 7 / 18 / 28 185
1% 10 times
-- Q7 6 / 12 / 31 120
0% 10 times
-- Q8 299 / 431 / 546 4311
23% 10 times
-- Q9 70 / 88 / 123 888
4% 10 times
-- Q10 2 / 4 / 11 44
0% 10 times
-- Q11 5 / 6 / 8 67
0% 10 times
-- Q12 3 / 8 / 13 82
0% 10 times
-- Q13 822 / 911 / 1023 9110
50% 10 times
-- Q14 83 / 170 / 275 1700
9% 10 times

1000 Universities

The measurement was done with 8 concurrent clients feeding the query mix against the 1000
first universities of the 8000 university set.

6.7 qps
CPU 89% of 400%, disk 6.9 of 8 threads waiting on average

Sample:

-- Q1 1 / 18 / 33 186
0% 10 times
-- Q2 8 / 115 / 640 1150
0% 10 times
-- Q3 7 / 75 / 278 756

0% 10 times
-- Q4 39 / 117 / 182 1175
0% 10 times
-- Q5 4 / 7 / 25 78
0% 10 times
-- Q6 9 / 28 / 98 280
0% 10 times
-- Q7 5 / 72 / 326 724
0% 10 times
-- Q8 347 / 13939 / 30077 139397
83% 10 times
-- Q9 170 / 364 / 763 3648
2% 10 times
-- Q10 3 / 18 / 45 186
0% 10 times
-- Q11 6 / 105 / 406 1058
0% 10 times
-- Q12 6 / 102 / 721 1025
0% 10 times
-- Q13 691 / 930 / 1260 9302
5% 10 times
-- Q14 101 / 589 / 1690 5898
3% 10 times

8000 Universities

4.8 qps
CPU at 20% of 400%, 7.7 threads waiting for disk on the average.

Sample:

-- Q1 20 / 71 / 219 710
0% 10 times
-- Q2 28 / 110 / 484 1106
0% 10 times
-- Q3 48 / 83 / 172 830
0% 10 times
-- Q4 121 / 205 / 364 2056
1% 10 times
-- Q5 4 / 40 / 133 403
0% 10 times
-- Q6 73 / 129 / 224 1298
0% 10 times
-- Q7 77 / 170 / 323 1706
0% 10 times
-- Q8 8169 / 15293 / 25299 152930
75% 10 times
-- Q9 234 / 629 / 988 6294
3% 10 times
-- Q10 12 / 36 / 69 363
0% 10 times
-- Q11 255 / 411 / 617 4116
2% 10 times
-- Q12 7 / 600 / 1027 6007

2% 10 times
-- Q13 15 / 303 / 1154 3035
1% 10 times
-- Q14 958 / 1897 / 2706 18979
9% 10 times

Comments: Q13 is low because there in fact are universities in the generated set from which
nobody has a degree.

Even though the performance is totally I/O-bound, all indices of the database have a hit rate of
over 99%. This means less than 1 read per 100 successfully retrieved rows.

Analysis

We see that the database size has little effect on query-times as long as the working set fits in
memory. The single query stream rate with 100K triples is 14 qps at 100K triples and 11 qps at
1G triples. We also note that while staying in memory, contention between processor cores does
not severely affect performance: from 11 qps with 1 stream to 33 qps with 8 streams with 4
cores.

As expected, we get a severe drop in performance when going out of purely memory-based
working set. This emphasizes the need for a memory-efficient storage format. This has been
addressed in Virtuoso 6, which stores twice as many triples in the same space.

All disk-access is done on-demand, one page at a time. The workload does not have many
opportunities for exploiting sequentiality in disk access. The starting point of a navigational
query is typically a bitmap, such as the bitmap of all subjects of a given type or all
suborganizations of a university. These often fit on a single page but for larger bitmaps read
ahead is beneficial and should be used.

Bitmap intersections are frequent: for example in Q13, where we have an intersection of all
subcases of person with all types of graduates from a given university. Thus we have a loop
iterating over the types of persons, a nested loop iterating over the types of degrees and then a
bitmap intersection counting how many of the persons intersect with the bitmap of graduates of
the given type from the university.

The bitmap intersection is about twice as efficient as the equivalent loop join, even in the worst
case, i.e. a short bitmap (all doctoral graduates of university 1) with a large bitmap (all associate
professors in the database). If the bitmaps are about the same size the gain from a bitmap merge
join is still greater.

Otherwise the access method is loop joining, most often using the OGPS bitmap index. This is
preferred because it is only about 1/3 the size of the GSPO index with the same data. Loop joins
with random access offer little opportunity for optimizing disk-access.

Hash joins do not occur in the execution plans, which is for the best. The cases of joining a
small set to a large one on equality of a key are covered by bitmap intersections.

Conclusions and Future Work

We have here presented intermediate results following a review of the LUBM query workload
and some consequent optimizations. All results are measured on Virtuoso 5.0.4, as of February
1, 2008.

We thank the authors of the LUBM benchmark for their work in defining the test data and the
workload. A point-by-point run-through this and the issues this presented resulted in an
improvement of over 30% in our performance of this workload. This serves to demonstrate that
benchmarks are always useful.

As we have stated many times before, RDF benchmarking needs to evolve to more varied
workloads, specifically analytics with aggregation and grouping. This is where a lot of the
action in the relational space is and where RDF also may find uses as a data integration
medium.

A query performance metric should have the right mix of frequent and infrequent queries. Also,
the queries likely to run in an interactive application and those run in batch mode should be
differently weighted and with different frequencies or should have their own benchmark and
metric. Due to this the queries-per-second metric presented here is not representative of any
specific type of application.

While LUBM has served us well indeed, it is time to define a new benchmark with a metric for
concurrent performance and a more complex and varied workload.

As future work, we intend to define a new RDF database benchmark drawing on the social web
as a use-case and featuring a more varied workload with a well-defined metric for concurrent
query and update.

At the time of writing, we are running the same tests on Virtuoso 6.0 in single-machine and
cluster configurations and hope to publish results in due course. As a preview, we can say that
performance there is higher due to improved storage density.

Appendix A Query Text

This appendix contains the text of the queries adapted to Virtuoso. Three variants are presented:
one with unions, one with run-time subclass and subproperty inference and one with all entailed
triples materialized. The script text can be run with the Virtuoso isql utility.

Entailment

For all scripts, the ub:chair property was materialized. The statement for this is:

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x ub:subOrganizationOf ?z } from
<lubm> where { ?x ub:subOrganizationOf ?y . ?y

ub:subOrganizationOf ?z . };

Additionally, for getting the correct results with the materialized script, the following
statements were run:

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x a ub:Professor }
where {
 { ?x a ub:AssistantProfessor } union
 { ?x a ub:AssociateProfessor } union
 { ?x a ub:FullProfessor } union
 { ?x a ub:VisitingProfessor }
 };

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x a ub:Faculty }
where {
 { ?x a ub:Professor } union
 { ?x a ub:PostDoc } union
 { ?x a ub:Lecturer }
 };

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x a ub:Student }
where {
 { ?x a ub:UndergraduateStudent } union
 { ?x a ub:GraduateStudent } union
 { ?x a ub:ResearchAssistant }
};

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x a ub:AdministrativeStaff }
where {
 { ?x a ub:ClericalStaff } union
 { ?x a ub:SystemsStaff }
};

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x a ub:Employee }
where {
 { ?x a ub:Faculty } union
 { ?x a ub:AdministrativeStaff }
};

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x a ub:Person }
where {
 { ?x a ub:Chair } union

 { ?x a ub:Dean } union
 { ?x a ub:Director } union
 { ?x a ub:Employee } union
 { ?x a ub:Student } union
 { ?x a ub:TeachingAssistant }
};

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x a ub:Course }
where {
 { ?x a ub:GraduateCourse }
};

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x ub:worksFor ?z }
where {
 { ?x ub:headOf ?z }
};

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x ub:memberOf ?z }
where {
 { ?x ub:worksFor ?z }
};

sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
insert into graph <lubm> { ?x ub:degreeFrom ?z }
where {
 { ?x ub:doctoralDegreeFrom ?z } union
 { ?x ub:mastersDegreeFrom ?z } union
 { ?x ub:undergraduateDegreeFrom ?z }
};

Query Text with Unions

set autocommit on;

-- Q1
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x rdf:type ub:GraduateStudent . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> };

-- Q2
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:GraduateStudent . ?y a ub:University . ?z a
ub:Department . ?x ub:memberOf ?z . ?z ub:subOrganizationOf ?y .

?x ub:undergraduateDegreeFrom ?y };

-- Q3
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Publication . ?x ub:publicationAuthor
<http://www.Department0.University0.edu/AssistantProfessor0> };

-- Q4
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where
{

{ ?x a ub:AssociateProfessor . ?x ub:worksFor
<http://www.Department0.University0.edu> . ?x ub:name ?y1 . ?x
ub:emailAddress ?y2 . ?x ub:telephone ?y3 . }
union
{ ?x a ub:AssistantProfessor . ?x ub:worksFor
<http://www.Department0.University0.edu> . ?x ub:name ?y1 . ?x
ub:emailAddress ?y2 . ?x ub:telephone ?y3 . }
union
{ ?x a ub:FullProfessor . ?x ub:worksFor
<http://www.Department0.University0.edu> . ?x ub:name ?y1 . ?x
ub:emailAddress ?y2 . ?x ub:telephone ?y3 . }

};

-- Q5
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where
{
{ ?x a ub:AssociateProfessor . ?x ub:memberOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:FullProfessor . ?x ub:memberOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:AssistantProfessor . ?x ub:memberOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:Lecturer . ?x ub:memberOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:UndergraduateStudent . ?x ub:memberOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:GraduateStudent . ?x ub:memberOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:TeachingAssistant . ?x ub:memberOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:ResearchAssistant . ?x ub:memberOf
<http://www.Department0.University0.edu> } union

{ ?x a ub:AssociateProfessor . ?x ub:worksFor
<http://www.Department0.University0.edu> } union

{ ?x a ub:FullProfessor . ?x ub:worksFor
<http://www.Department0.University0.edu> } union
{ ?x a ub:AssistantProfessor . ?x ub:worksFor
<http://www.Department0.University0.edu> } union
{ ?x a ub:Lecturer . ?x ub:worksFor
<http://www.Department0.University0.edu> } union
{ ?x a ub:UndergraduateStudent . ?x ub:worksFor
<http://www.Department0.University0.edu> } union
{ ?x a ub:GraduateStudent . ?x ub:worksFor
<http://www.Department0.University0.edu> } union
{ ?x a ub:TeachingAssistant . ?x ub:worksFor
<http://www.Department0.University0.edu> } union
{ ?x a ub:ResearchAssistant . ?x ub:worksFor
<http://www.Department0.University0.edu> } union

{ ?x a ub:AssociateProfessor . ?x ub:headOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:FullProfessor . ?x ub:headOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:AssistantProfessor . ?x ub:headOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:Lecturer . ?x ub:headOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:UndergraduateStudent . ?x ub:headOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:GraduateStudent . ?x ub:headOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:TeachingAssistant . ?x ub:headOf
<http://www.Department0.University0.edu> } union
{ ?x a ub:ResearchAssistant . ?x ub:headOf
<http://www.Department0.University0.edu> }

};

-- Q6
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm> where {
 { ?x a ub:UndergraduateStudent . }
 union
 { ?x a ub:ResearchAssistant . }
 union
 { ?x a ub:GraduateStudent . }
};

-- Q7
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where
{
{ ?x a ub:UndergraduateStudent . ?y a ub:Course .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . }
union

{ ?x a ub:UndergraduateStudent . ?y a ub:GraduateCourse .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . }
union
{ ?x a ub:ResearchAssistant . ?y a ub:Course .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . }
union
{ ?x a ub:ResearchAssistant . ?y a ub:GraduateCourse .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . }
union
{ ?x a ub:GraduateStudent . ?y a ub:Course .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . }
union
{ ?x a ub:GraduateStudent . ?y a ub:GraduateCourse .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . }
}
;

-- Q8
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where
{
 { ?x a ub:UndergraduateStudent . ?y a ub:Department . ?x
ub:memberOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . ?x ub:emailAddress ?z }
 union
 { ?x a ub:UndergraduateStudent . ?y a ub:Department . ?x
ub:worksFor ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . ?x ub:emailAddress ?z }
 union
 { ?x a ub:UndergraduateStudent . ?y a ub:Department . ?x
ub:headOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . ?x ub:emailAddress ?z }
 union
 { ?x a ub:ResearchAssistant . ?y a ub:Department . ?x
ub:memberOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . ?x ub:emailAddress ?z }
 union
 { ?x a ub:ResearchAssistant . ?y a ub:Department . ?x
ub:worksFor ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . ?x ub:emailAddress ?z }
 union
 { ?x a ub:ResearchAssistant . ?y a ub:Department . ?x ub:headOf
?y . ?y ub:subOrganizationOf <http://www.University0.edu> . ?x
ub:emailAddress ?z }
 union
 { ?x a ub:GraduateStudent . ?y a ub:Department . ?x ub:memberOf
?y . ?y ub:subOrganizationOf <http://www.University0.edu> . ?x
ub:emailAddress ?z }

 union
 { ?x a ub:GraduateStudent . ?y a ub:Department . ?x ub:worksFor
?y . ?y ub:subOrganizationOf <http://www.University0.edu> . ?x
ub:emailAddress ?z }
 union
 { ?x a ub:GraduateStudent . ?y a ub:Department . ?x ub:headOf ?y
. ?y ub:subOrganizationOf <http://www.University0.edu> . ?x
ub:emailAddress ?z }
}
;

-- Q9
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where
{
 { ?x a ub:ResearchAssistant . ?y a ub:Lecturer . ?z a ub:Course
. ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y ub:teacherOf ?z .
} union
 { ?x a ub:ResearchAssistant . ?y a ub:PostDoc . ?z a ub:Course
. ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y ub:teacherOf ?z .
} union
 { ?x a ub:ResearchAssistant . ?y a ub:VisitingProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:AssistantProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:AssociateProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:FullProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union

 { ?x a ub:ResearchAssistant . ?y a ub:Lecturer . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:PostDoc . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:VisitingProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:AssistantProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:AssociateProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:ResearchAssistant . ?y a ub:FullProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:Lecturer . ?z a

ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:PostDoc . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:VisitingProfessor . ?z
a ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:AssistantProfessor . ?
z a ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:AssociateProfessor . ?
z a ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:FullProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union

 { ?x a ub:UndergraduateStudent . ?y a ub:Lecturer . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:PostDoc . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:VisitingProfessor . ?z
a ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?
y ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:AssistantProfessor . ?
z a ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z .
?y ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:AssociateProfessor . ?
z a ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z .
?y ub:teacherOf ?z . } union
 { ?x a ub:UndergraduateStudent . ?y a ub:FullProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:Lecturer . ?z a ub:Course .
?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y ub:teacherOf ?z . }
union
 { ?x a ub:GraduateStudent . ?y a ub:PostDoc . ?z a ub:Course .
?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y ub:teacherOf ?z . }
union
 { ?x a ub:GraduateStudent . ?y a ub:VisitingProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:AssistantProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:AssociateProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:FullProfessor . ?z a
ub:Course . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:Lecturer . ?z a

ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:PostDoc . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:VisitingProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:AssistantProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:AssociateProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . } union
 { ?x a ub:GraduateStudent . ?y a ub:FullProfessor . ?z a
ub:GraduateCourse . ?x ub:advisor ?y . ?x ub:takesCourse ?z . ?y
ub:teacherOf ?z . }
};

-- Q10
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where
{
{ ?x a ub:ResearchAssistant . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> . }
union
{ ?x a ub:UndergraduateStudent . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> . }
union
{ ?x a ub:GraduateStudent . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> . }
};

-- Q11
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a ub:ResearchGroup .
?x ub:subOrganizationOf <http://www.University0.edu> . };

-- Q12
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where
 {
 { ?x a ub:FullProfessor . ?y a ub:Department . ?x
ub:headOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . }
 union
 { ?x a ub:AssistantProfessor . ?y a ub:Department . ?x
ub:headOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . }
 union
 { ?x a ub:AssociateProfessor . ?y a ub:Department . ?x
ub:headOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . }

 };

-- Q13
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where
{
{ ?x a ub:AssociateProfessor . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:FullProfessor . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:AssistantProfessor . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:Lecturer . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:UndergraduateStudent . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:GraduateStudent . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:TeachingAssistant . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:ResearchAssistant . ?x ub:doctoralDegreeFrom
<http://www.University0.edu> . }

union

{ ?x a ub:AssociateProfessor . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:FullProfessor . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:AssistantProfessor . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:Lecturer . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:UndergraduateStudent . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:GraduateStudent . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:TeachingAssistant . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:ResearchAssistant . ?x ub:mastersDegreeFrom
<http://www.University0.edu> . }

union

{ ?x a ub:AssociateProfessor . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:FullProfessor . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:AssistantProfessor . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:Lecturer . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:UndergraduateStudent . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:GraduateStudent . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:TeachingAssistant . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }
union
{ ?x a ub:ResearchAssistant . ?x ub:undergraduateDegreeFrom
<http://www.University0.edu> . }

}

;

-- Q14
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a
ub:UndergraduateStudent . };

Query Text With Inference Options

set autocommit on;

-- Q1
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x rdf:type ub:GraduateStudent . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> };

-- Q2
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>

select * from <lubm>
where { ?x a ub:GraduateStudent . ?y a ub:University . ?z a
ub:Department . ?x ub:memberOf ?z . ?z ub:subOrganizationOf ?y .
?x ub:undergraduateDegreeFrom ?y };

-- Q3
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Publication . ?x ub:publicationAuthor
<http://www.Department0.University0.edu/AssistantProfessor0> };

-- Q4
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where { ?x a ub:Professor . ?x ub:worksFor
<http://www.Department0.University0.edu> . ?x ub:name ?y1 . ?x
ub:emailAddress ?y2 . ?x ub:telephone ?y3 . };

-- Q5
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where { ?x a ub:Person . ?x ub:memberOf
<http://www.Department0.University0.edu> };

-- Q6
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm> where { ?x a ub:Student . };

-- Q7
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where { ?x a ub:Student . ?y a ub:Course .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . };

-- Q8: XXX
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>

select distinct * from <lubm>
where { ?x a ub:Student . ?y a ub:Department . ?x ub:memberOf ?y
. ?y ub:subOrganizationOf <http://www.University0.edu> . ?x
ub:emailAddress ?z };

-- Q9: XXX
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select distinct * from <lubm>
where { ?x a ub:Student . ?y a ub:Faculty . ?z a ub:Course . ?x
ub:advisor ?y . ?x ub:takesCourse ?z . ?y ub:teacherOf ?z . };

-- Q10
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Student . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> . };

-- Q11
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a ub:ResearchGroup .
?x ub:subOrganizationOf <http://www.University0.edu> . };

-- Q12
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a ub:Professor . ?y a
ub:Department . ?x ub:headOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . };

-- Q13
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a ub:Person . ?x
ub:degreeFrom <http://www.University0.edu> . };

-- Q14
sparql
define input:inference 'inft'
prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a
ub:UndergraduateStudent . };

Appendix C Query Text With Materialized Entailed Triples

set autocommit on;

-- Q1
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x rdf:type ub:GraduateStudent . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> };

-- Q2
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:GraduateStudent . ?y a ub:University . ?z a
ub:Department . ?x ub:memberOf ?z . ?z ub:subOrganizationOf ?y .
?x ub:undergraduateDegreeFrom ?y };

-- Q3
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Publication . ?x ub:publicationAuthor
<http://www.Department0.University0.edu/AssistantProfessor0> };

-- Q4
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Professor . ?x ub:worksFor
<http://www.Department0.University0.edu> . ?x ub:name ?y1 . ?x
ub:emailAddress ?y2 . ?x ub:telephone ?y3 . };

-- Q5
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Person . ?x ub:memberOf
<http://www.Department0.University0.edu> };

-- Q6
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm> where { ?x a ub:Student . };

-- Q7
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Student . ?y a ub:Course .
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y . ?x ub:takesCourse ?y . };

-- Q8
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>

select * from <lubm>
where { ?x a ub:Student . ?y a ub:Department . ?x ub:memberOf ?y
. ?y ub:subOrganizationOf <http://www.University0.edu> . ?x
ub:emailAddress ?z };

-- Q9
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Student . ?y a ub:Faculty . ?z a ub:Course . ?x
ub:advisor ?y . ?x ub:takesCourse ?z . ?y ub:teacherOf ?z . };

-- Q10
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#>
select * from <lubm>
where { ?x a ub:Student . ?x ub:takesCourse
<http://www.Department0.University0.edu/GraduateCourse0> . };

-- Q11
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a ub:ResearchGroup .
?x ub:subOrganizationOf <http://www.University0.edu> . };

-- Q12
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a ub:Professor . ?y a
ub:Department . ?x ub:headOf ?y . ?y ub:subOrganizationOf
<http://www.University0.edu> . };

-- Q13
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a ub:Person . ?x
ub:degreeFrom <http://www.University0.edu> . };

-- Q14
sparql prefix ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-
bench.owl#> select * from <lubm> where { ?x a
ub:UndergraduateStudent . };

Appendix B Configuration

Single process, 8G RAM.

The following lines were changed in the default virtuoso.ini file:

NumberOfBuffers = 550000
MaxCheckpointRemap = 2000000
Striping = 1

[Striping]
One file per disk, with distinct IO queue
Segment1 = 100G /disk1/db1-1.db q1, /disk2/db1-2.db q2 #

and so on

