
Integrating Open Sources and Relational
Data with SPARQL
Orri Erling (Program Manager, OpenLink Virtuoso) and Ivan Mikhailov (Lead Developer,
OpenLink Virtuoso).

OpenLink Software, 10 Burlington Mall Road Suite 265 Burlington, MA 01803 U.S.A,
{oerling,imikhailov}@openlinksw.com
WWW home page: http://www.openlinksw.com/

Table of Contents
Abstract
Introduction and Motivation
The Data and Queries

SPARQL Extensions
Linked Data
Performance of Mapping

System Demonstrated
Conclusions
References

Abstract
We believe that the possibility to use SPARQL as a frontend to heterogeneous data without
significant cost in performance or expressive power is key to RDF taking its rightful place as
the lingua franca of data integration. To this effect, we demonstrate how RDF and SPARQL
can tackle a mix of standard relational workload and data mining in public data sources.

We discuss extending SPARQL for business intelligence (BI) workloads and relate experiences
on running SPARQL against relational and native RDF databases. We use the well known TPC
H benchmark as our reference schema and workload. We define a mapping of the TPC H
schema to RDF and restate the queries as BI extended SPARQL. To this effect, we define
aggregation and nested queries for SPARQL. We demonstrate that it is possible to perform the
TPC H workload restated in SPARQL against an existing RDBMS without loss of performance
or expressivity and without changes to the RDBMS. Finally, we demonstrate how to combine
TPC-H or XBRL financial reports with RDF data from CIA factbook and DBpedia.

Introduction and Motivation
RDF promises to be a top-level representation for data extracted or accessed or demand from
any conceivable source. Thus, chief promise of RDF is in the field of information integration,

analysis and discovery. Yet it is difficult to imagine any business reporting, let alone more
complex information integration task that would not involve aggregating and grouping.

As a data access and data integration vendor, OpenLink has a natural interest in seeing
SPARQL succeed as a top level language for answering business questions on data mapped
from any present day data warehouse or other repository.

For SPARQL to deliver on this potential, several extension and scalability issues have to be
addressed. These include:

Expressive power of SPARQL must be at least on par with SQL. As of the present, the
SPARQL recommendation is lacking aggregation, grouping, expressions in result sets,
nested subqueries and full text support, to name a few. All these are either part of SQL or
universally available in RDBMS, as in the case of full text. The baseline business
intelligence benchmark, TPC H, relies on these all, except for full text.
Efficient mapping of SPARQL to relational queries against one or more relational
databases. SPARQL's promise is greatest in combining data from diverse sources. Still, in
cases where a straightforward translation of SPARQL to SQL is possible, the performance
should not be much less than that of the relational back-end when accessed through SQL.
Scalability of RDF storage. Parallelization and clustering are needed for scaling into the
tens of billions of triples and beyond.

We intend to demonstrate how we address all these questions with our Virtuoso product.

The Data and Queries

We draw on a combination of real-world and synthetic data sets for the demonstration. In
specific, we use the following:

DBpedia;
US Census;
real world XBRL financial data mapped into RDF;
various Linking Open Data sets, such as Geonames and the CIA Factbook;
TPC H benchmark data, a scalable industry standard benchmark data set.

The TPC H data is stored in relational form as well as as RDF triples. We demonstrate queries
combining these data in novel ways. For example:

comparing sales figures from the TPC H data with population and GDP figures from the
CIA Factbook;
combining XBRL financial results with geography and DBpedia information on the same
companies;
comparing two TPC H data sets, one as a relational database and one in RDF form.

In addition to aggregate queries such as the above, we show navigation by following data links
between these sets.

We also present loading and query times for data sets such as the LUBM benchmark data and
the Uniprot data set.

The complete source code of the queries and data definitions and mappings is published at the
OpenLink web site at the time of the demonstration (http://demo.openlinksw.com/tpc-h/). The
data itself is either linked open data or synthetic data that can be generated with generally
available tools. Thus the things demonstrated are readily reproducible.

SPARQL Extensions

We show how we have extended SPARQL with the following:

Subqueries and derived tables.
Aggregates, grouping and expressions in results.
Syntax sugar for following chains of references, as in region of country of customer of
order X.

The below is the SPARQL version of Q2 from the TPC H queries.

prefix tpcd: <http://www.openlinksw.com/schemas/tpcd#>
select
?supp+>tpcd:acctbal
?supp+>tpcd:name
?supp+>tpcd:has_nation+>tpcd:name as ?nation_name
?part+>tpcd:partkey
?part+>tpcd:mfgr
?supp+>tpcd:address
?supp+>tpcd:phone
?supp+>tpcd:comment
from <http://example.com/tpcd>
where {
?ps a tpcd:partsupp ; tpcd:has_supplier ?supp ; tpcd:has_part ?
part .
?supp+>tpcd:has_nation+>tpcd:has_region tpcd:name 'EUROPE' .
?part tpcd:size 15 .
?ps tpcd:supplycost ?minsc .
{ select ?part min(?ps+>tpcd:supplycost) as ?minsc
where {
?ps a tpcd:partsupp ;
tpcd:has_part ?part ; tpcd:has_supplier ?ms .
?ms+>tpcd:has_nation+>tpcd:has_region tpcd:name 'EUROPE' .
} }
filter (?part+>tpcd:type like '%BRASS') }
order by
desc (?supp+>tpcd:acctbal)
?supp+>tpcd:has_nation+>tpcd:name
?supp+>tpcd:name
?part+>tpcd:partkey

We notice a subquery used for determining the lowest supply cost for a part. We also notice the
pattern

{ ?ms+>tpcd:has_nation+>tpcd:has_region tpcd:name 'EUROPE' }

which is a shorthand for

{ ?ms tpcd:has_nation ?t1 . ?t1 tpcd:has_region ?t2 .
?t2 tpcd:name "EUROPE" }

The notation with +> differs from a join path expressed with [] in that these are allowed in
expressions and that common subpaths are guaranteed to be included only once in the
evaluation. Thus

sum (?c+>has_order+>has_line+>l_extendedprice *
(1 - ?c+>has_order+>has_line->l_discount))

evaluates to the sum of each line's extendedprice multiplied by the line's discount whereas

sum (?extprice * (1 - ?discount))
...
?c has_order [has_line [l_extendedprice ?extprice]] .
?c has_order [has_line [l_discount ?discount]]

would mean the sum of every price times every discount.

For brevity we have omitted the declarations for mapping the TPC H schema to its RDF
equivalent. The mapping is straightforward, with each column mapping to a predicate and each
table to a class.

Linked Data

Virtuoso has an integrated HTTP server used for providing web services end points and web
app hosting. For presenting the TPC H data as linked data, we have added a virtual collection
which presents the data as dereferenceable URIs, redirecting the dereference to a describe query
against the SPARQL end point.

Performance of Mapping

As a baseline, we take the performance of Virtuoso executing TPC H queries in SQL against
Oracle. There Virtuoso parses the SQL query, makes a distributed execution plan, finds out the
whole query can go to Oracle and finally rewrites the query as a single Oracle SQL query. This
takes an average of 7 ms per query, including time to send and retrieve results. The rest of the
real time is spent by Oracle.

Adding the SPARQL to SQL layer on top of this adds another 9 ms to each query. The cost of
SPARQL is negligible in the cases where the resulting SQL query passes as a single unit to
Oracle.

We note that the single most important factor in any distributed query performance as opposed
to local query performance is the number of synchronous round trips between the processes

involved.

Some SPARQL queries make a suboptimal SQL that does not pass as a unit to Oracle (even if
it should), so the execution is divided between Virtuoso and Oracle and there is significant cost
from message latency. Fixing this is a current work in progress.

System Demonstrated

The demonstration databases run on a cluster of X86-64 servers either at our offices or
Amazon's EC2. Smaller scale local demonstration can be run on laptops with the same software
but less data.

The software demonstrated includes:

Virtuoso 6.0 RDBMS and triple store.
Oracle 10G RDBMS accessed both directly and through Virtuoso's RDF to relational
mapping.
Diverse RDF browsers (Tabulator, OpenLink RDF Browser and Zitgist).

Conclusions

Mapping of relational data to RDF has existed for a long time [6][7]. The work shown here
represents its coming of age. We can tackle a standard SQL workload without loss of
performance or added complexity. Basically, we can bring any data warehouse to the world of
linked data, giving dereferenceable URI's and SPARQL while retaining the performace of SQL.

We would point out that bringing SPARQL on par with SQL for decision support queries is not
aimed at replacing SQL but at making SPARQL capable of fulfilling its role as a language for
integration.

Indeed, we retain all of SPARQL's and RDF's flexibility for uniquely identifying entities, for
abstracting away different naming conventions, layouts and types of primary and foreign keys
and so forth.

In the context of mapping relational data to RDF, we can map several instances of comparable
but different schemes to the common terminology and couch all our queries within this
terminology. Further, we can join from this world of mapped data to native RDF data, such as
the data in the Linking Open Data project.

Once we have demonstrated that performance or expressivity barriers do not cripple SPARQL
when performing traditional SQL tasks, we have removed a significant barrier from enterprise
adoption of RDF and open data.

References

1. W3C RDF Data Access Working Group: SPARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query/
2. Transaction Processing Performance Council: TPC-H a Decision Support Bench-mark.

http://www.tpc.org/tpch/
3. Linking Open Data Project. http://linkeddata.org/
4. DBpedia: A Community Effort to Extract Structured Information From Wikipedia.

http://dbpedia.org/
5. XBRL - Extensible Business Reporting Language. http://www.xbrl.org/Home/
6. Andy Seaborn: Counting and GROUP BY in ARQ.

http://seaborne.blogspot.com/2007/09/counting-and-group-by.html
7. Christian Weiske, S¨oren Auer: Implementing SPARQL Support for Relational Databases

and Possible Enhancements. Proceedings of the 1st Conference on Social Semantic Web.
Leipzig (CSSW 2007), SABRE. LNI 113 GI 2007. Bonner Kollen Verlag, ISBN 978-3-
88579-207-9. http://www.informatik.uni-leipzig.de/auer/publication/sparql-
enhancements.pdf

8. Orri Erling, Ivan Mikhailov: Adapting an ORDBMS for RDF Storage and Mapping.
Proceedings of the 1st Conference on Social Semantic Web. Leipzig (CSSW 2007),
SABRE. LNI 113 GI 2007. Bonner Kollen Verlag, ISBN 978-3-88579-207-9

