
Virtuoso and Database Scalability
By Orri Erling

Table of Contents

Abstract
Metrics
Results

Transaction Throughput
Initializing 40 warehouses
Serial Read

Test Conditions
Analysis

Working Set
Effect of Server Cache Size
CPU Load

Disk Parallelism
Implications for Web Applications
Other DBMS
Conclusions

Abstract

This article shows results of running a TPC-C-based benchmark on a number of different
platforms with different CPUs, amounts of memory, and numbers of disks. The motivation for
the tests was finding a suitable building block for a Virtuoso-based web application server farm.

We concentrate on hardware and database scales that are most likely relevant for developers of
small to mid-size online applications. The database size starts at 4G, and the test has 80
concurrent clients. We compare systems with between 512M and 4G of memory, and 1 to 4
disks.

The subject of benchmarking and optimizing the operation of a database server on a particular
OS for a particular workload is extremely complex. In this article, we show some sample results
and outline dependencies between factors affecting performance but do not claim to present an
exhaustive study of the subject.

The numbers obtained are not comparable with the official TPC-C metric. The type of system
and the test rules are quite different.

Metrics

The benchmarks measure the following:

Time to load a 40 warehouse TPC C database. This is about 4G worth of short data rows,
inserted in ascending order from an ODBC client application. This measures the speed of
a single CPU, as the operation is mostly CPU bound with serial disk writes taking place
in the background. Before this is done, a 12GB empty database is preallocated, striped on
as many disks as are available.
The transactions per minute metric, running 80 clients, 2 per warehouse, each client
producing the TPC-C transaction mix, starting the next transaction as soon as the previous
completes. This is affected by a combination of random disk access latency, amount of
memory and CPU speed.
Serial read - This measures the disk throughput for reading through a large fragmented
database table, a typical operation for any business intelligence query.

Results

Transaction Throughput

Throughput disk type and
quantity RAM processor kind, speed, and

quantity CPU% System

19001 3 x SCSI 44
GB 2 x SPARC, 1.6GHz 120% Solaris 10 on

SunFire 440

11580 4 x SATA 1 GB 1 x AMD64, 2 GHz 50% FC4 on AMD64
Generic PC

8138 1 x SCSI 2 GB 2 x AMD64, 1.8GHz 42% Solaris 10 on
SunFire V20z

6081 4 x SCSI RAID 2 GB 4 x Pentium 3 700 MHz N/A Windows 2000
on Dell

2989 2 x SATA 1 GB 1 x AMD64 2GHz 10% FC4 on Generic
PC

2701 4 x SCSI 0.5
GB 2 x Pentium 3 600MHz 102% Solaris 7 on

Generic PC

83937 4 x SATA
7200rpm 8 GB 2 x dual core Xeon 5130,

2GHz, 64 bit mode 274% Supermicro 7045
A/T

49450 4 x SATA
7200rpm 8 GB 2 x dual core Xeon 5130,

2GHz, 64 bit mode 187% Supermicro 7045
A/T

2607 1 x 80G built-in 2 GB 1 x Intel Core Duo 1.66GHz 27% Mac OS X on
Mac mini

The throughput is the count of successful new order transactions made during the test run,
scaled to a transactions per minute count. For every 10 new orders, there are 10 payments, 1
delivery, 1 order status, and 1 stock level transaction. These are not separately reported.

The CPU% is percentage of one CPU; thus on multiprocessor systems, the percentage can be
over 100.

Initializing 40 warehouses

Time disk type and
quantity processor kind, speed, and quantity System

12m
6.874s 4 x SATA 1 x AMD64 2GHz FC4 on AMD64

Generic PC
17m

4.007s 3 x SCSI 2 x SPARC 1.6GHz Solaris 10 onSunFire
440

17m
50.294s 1 x SCSI 2 x AMD64, 1.8GHz Solaris 10 on SunFire

V20z
44m 4 x SCSI 2 x Pentium 3 600MHz Solaris 7 on Generic PC

4m 34s 4 x SATA 7200rpm 2 x dual core Xeon 5130, 2GHz, 64
bit mode Supermicro 7045 A/T

14m 14s 1 x 80G built-in 1 x Intel Core Duo 1.66GHz Mac OS X on Mac mini

Serial Read

MB per second disk type and quantity System
8.25 3 x SCSI Solaris 10 onSunFire 440
7.77 4 x SATA FC4 on AMD64 Generic PC
2.69 1 x SCSI Solaris 10 on SunFire V20z

Test Conditions

Each system was tested with the database and 80 clients running on the same machine. First a
12G preallocated test database was made, then filled with 40 warehouses. After this, 80 test
drivers were started, two per warehouse, and left to run for 60 minutes of real time. After 60
minutes the database was shut down, disconnecting the clients. The database was restarted and
the number of new orders was counted. This number minus the original number of orders
divided by 60 is the metric. After this the sequential read test was run.

Below are the relevant lines of the virtuoso.ini file used for the test:

[Database]
TransactionFile = tpcc.trx
Striping = 1

[Parameters]
ServerThreads = 1000
; These are allocated as needed,
the essential
; is to have 30% more than the
number of
; concurrent clients.
CheckpointInterval = 20

; To have a steady state test, one
that does
; not accumulate an infinite
transaction log,
; we checkpoint every 20 minutes,
three times
; per the one hour test run.
NumberOfBuffers = 43000
; 43000 if 512MB RAM; 120000 if 2G
- Systems
; were tried with different
settings and the
; best result was taken.
MaxDirtyBuffers = 30000
; About 3/4 of number of buffers
MaxCheckpointRemap = 500000
; Make this larger than the working
set, so
; that checkpoints will just be
buffer flushes
; without need to move data inside
db files.
; 500000 pages is about 4G
FDsPerFile = 16
; Especially if the database is a
single file
; or few files, especially if on a
striped
; RAID, this should be large. This
controls
; how many threads may have a
read/write
; system call going on a single
file. The OS
; will get to sort them and/or do
them in
; parallel if the fs is striped.
It is best
; to do striping at the db level
and to have
; disks that are known to be
independent rather
; than relying on a RAID controller
for this.

[Striping]
Segment1 = 12G, tpcc1.seg q1
; Add files here, one file per
independent disk,
; have q2...qn after each to
allocate dedicated
; I/O thread per device

Analysis

Working Set

To understand the dynamic between main memory and I/O, we have to look at the working set
of the transaction mix. The stock and customer tables amount to about 58 MB per warehouse
and are subject to constant updating. The frequency of access to all rows is not equal but we
may idealize the situation by assuming that at the page level all pages of these tables get even
frequency of access even if the rows do not. Additionally, there are 10 points per warehouse in
the *orders* and *order_line* tables where sequential inserts take place. Both the
delivery and stock level transactions concern recently inserted orders. The delivery transaction
updates orders 2.8 MB worth of inserts after they were first inserted. If we count new orders
before they get updated by the delivery transaction and are subsequently not touched as part of
working set, we get an extra 28 MB of working set per warehouse. With low memory, order
lines are not likely to stay in cache for the interval between initial insertion and update on
delivery, so we can roughly estimate the per warehouse working set to be 66MB, counting 8
MB for the 40 insert or update points corresponding to insert in *orders* and
order_line and the recent order lines scanned by the stock level transaction.

For 40 warehouses, this gives a working set of 2640MB. Since the activity on orders and order
lines is localized and constant, the cache misses are divided between the stock and customer
tables.

Effect of Server Cache Size

On a system with 2G RAM, we have about half the working set in memory if we configure half
the space for database buffers and the other half will go mostly towards OS file caching. If we
configure most of the space for database buffers, the OS will swap database buffers out in order
to keep more file cache. This is very bad for performance.

On a system with 1G, we may have up to a quarter in memory, again if we configure half the
memory for database buffers.

Means of avoiding double buffering are system dependent and are not addressed in this article
but may be revisited in a follow up.

We have run the test on a SunFire V20z Solaris 10 machine with 2G of RAM with different
amounts of database buffers. The measurements were --

Buffers Throughput
43000 3872
86000 6955
100000 7819
120000 8137
150000 7253

There are two factors explaining the large effect of the amount of server disk cache:

There is a difference between having the data in warm OS file cache and having it in the
user space of the process. For a SELECT COUNT (*) doing a full table scan, having
the pages in the server cache as opposed to copying them from warm OS file cache to the
server cache makes approximately a threefold difference, measured on Linux.
Having more buffers in the server cache significantly reduces the number of disk writes
per transaction. With 43000 buffers, we have typically 3 disk writes for every new order.
With 140000 buffers, we have about 1.4 writes per new order. Additional tuning could
drop this still further.

When the amount of main database cache goes over 2/3 of main memory, performance drops
sharply, mostly due to the OS swapping out the database process in favor of OS disk cache.
Wiring down the database process may help but results will depend on the OS.

CPU Load

The CPU load due to the clients is minimal, about 1/20 of the CPU usage of the server. The
clients do nothing except execute stored procedure calls one after the other and do virtually no
other I/O.

We see that the database load time essentially reflects the clock speed. This is a single CPU,
CPU bound operation where all I/O is sequential background writes.

The transaction rate on the other hand reflects the number of independently addressable disks
and the amount of memory.

The split between user and system CPU time was around 15% system CPU, as percentage of
total CPU. The percentage rarely exceeded 25%. This was the case in all operating systems.

To find out the difference between CPU bound and I/O bound situations, we decreased the
working set to 10 warehouses, to about 650MB and we ran the same test with again two clients
per warehouse. After the test reached a steady state after a ramp-up of 7 minutes on our dual
AMD64 SunFire, we measured CPU at around 70%,, varying between 80% and 60%, meaning
around one and a half of 2 CPUs on the Virtuoso server process. We continued to have 350%
disk reads, meaning an average of 3.5 read system calls pending at each time, down from over
20 pending at a time when we ran with the 40 warehouse configuration. We note however that
writes to disk do occur, both for transaction log and dirty buffers, even though the frequently
updated working set tends not to get written to disk and at any time about 2/3 of the buffers are
dirty. Thus the test is not free of I/O; however, it is mostly CPU bound.

The mostly memory based database throughput was 42748 transactions per minute, with 64%

CPU, that is 128% of one CPU. This is about five times the throughput of the heavily I/O
bound scenario with the 40 warehouse working set.

Disk Parallelism
If the working set is significantly larger than the server's disk cache performance grows near
linearly with the number of disks, at least between 1 and 4 disks.

We see nearly the same throughput for an old 600MHz dual Pentium 3 with 512 MB and a new
2GHz AMD64 with 1GB and 2 SATA disks. In both cases, the benchmark is heavily I/O
bound, thus the double amount of parallel disk seeks compensates for having only half the
memory.

The fragmented sequential read metric also reflects the number of disks. There is a per-disk
ordered read ahead, done with one thread per device, so that the throughput is roughly linear to
the number of disks, at least at the beginning. This is independent of the amount of memory, as
the read is done in into a cold cache and no row is visited twice. There is substantial
fragmentation, thus this should not be compared with raw disk data transfer rates.

Implications for Web Applications
The TPC C workload is I/O intensive. Each transaction requires fairly little CPU in comparison
with composing a typical dynamic web page, for example. When profiling the Virtuoso web
applications suite, it is not uncommon to have about 15% of the work database related and the
rest having to do with composing the page.

TPC C is not representative of an e-commerce application, since most of the clicks processed
by one have to do with browsing the catalogue or filling the shopping cart, as opposed to
processing an order.

It is safe to estimate that a typical web application, for the same amount of I/O as is generated
by TPC-C, will use 5-10x more CPU. Thus, while there was little or no benefit from multiple
CPUs in the cases covered, a web application is likely to benefit from 2 or 4 CPUs for the same
amount of I/O.

Other DBMS
The same observations will apply to basically any DBMS. We have ported the Virtuoso TPC-C
test driver and stored procedures to Oracle and Microsoft SQL Server. The Oracle stored
procedures can be found in binsrc/tests/oracle_tpcc. The DB2 and Microsoft
SQL Server procedures can be found in any TPC full disclosure report. For the interested,
making the tests run on any database with stored procedures and ODBC should be a simple
task. In many cases, license terms prohibit us from publishing results of tests run on databases
other than our own.

Conclusions

From the measurements we infer that the lowest cost per throughput would be found with an
AMD64 PC with 4GB memory and as many SATA disks as possible. While high end disks
provide better seek times and transfer rates, these are offset by having a larger number of
independently seekable units, whether this were for sequential or random access. A commodity
PC with this spec costs around $2000-2500, where as the Sun servers tested are more
expensive. We do not have exact prices for all the systems tested.

An in depth study of scalability would have to involve measurements with system specific OS
tuning for eliminating double buffering and preventing swapping of the server process. Also the
performance per added disk should be graphed, up to the point of diminishing returns. Indeed,
each answer gives rise to more questions.

We trust however that the data presented herein gives an initial feel for the factors affecting
Virtuoso performance on common hardware configurations.

