
Deploying PHP applications using Virtuoso
as Application Server
Table of Contents

What
Why

A note on RDF
When URIs and URLs collide: Linked Data

Data Example
How to

Using the Conductor
Existing Applications
Installing ODS
Setting up ODS & PHPBB3
Other PHP Applications
Browsing

Developers: building Virtuoso Open-Source with PHP support
Building PHP
Building Virtuoso with PHP
Enabling the PHP Hosting plugin
Using PHP5 and Virtuoso (Commercial Edition)
Compiling your own PHP extensions
Testing
Bringing it together: PHP, web-apps and data
The PiÃ¨ce de RÃ©sistance

What

OpenLink Virtuoso has the capability to act as a host for PHP applications. Where you're
currently used to seeing a LAMP (Linux, Apache, MySQL, PHP) stack, Virtuoso can do the job
of both Apache as web-server and MySQL as database - and lots more.

Virtuoso brings a myriad of extra features, from not just a fast relational database store
(although it does that too), to RDF triple-store (actually a quad-store; each triple is associated
with a graph), to semantic-web engine to application-development platform and beyond.

Why

Existing applications such as PHPBB and WordPress are large pools of personal and social data
- a "data space" - yet the means of querying them are mostly limited to the domain and
application themselves. For example, within a phpBB3 instance, you can type a word into the
search box, but the results are constrained to coming from only that instance, notably the format
in which it chooses to display them and the actions it permits you to take based on the results,
and (in this case) there is no URL with which to identify the query itself (so no bookmarks, no
sharing with others). More advanced queries require digging around the underlying tables with
SQL, if you have access to the backend DB.

One could summarize the possible query-methods:

application-provided search boxes
site-wide statistical free-text (google)
custom reports requiring SQL/developer abilities

None of these methods allow one to execute a search on a WordPress blog for "red, by which I
mean the square in Moscow not the colour". As we shall see, semantic-web technologies will
address this.

The good news is that the underlying data is much richer, and may be exposed in such a way
for users to deploy their own query-tools against it by opening it up in the form of RDF.

A note on RDF

RDF is a framework based on the Entity-Attribute-Value data-model; it can be thought of as a
set of statements expressed in triples subject, predicate and object where the subject entity and
predicate must be identified using URIs, and the value object may be either a URI or a literal
value.

As a separate consideration, RDF may be serialized in several formats; there is RDF/XML
which is orientated towards machine-reading, but there are also Turtle and N-3 syntaxes more
readily accessible to humans. We regard the representation as of secondary importance
compared to the fact it is statements being represented in the form of triples.

A set of predicates combine into vocabularies known as "ontologies"; there are several well-
known ontologies such as FOAF and Dublin Core which, amongst many other things, allows
you to make a statement such as

prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://www.openlinksw.com/> dc:subject "database" .

Entities, described by RDF, group into "graphs" - a set of nodes linked one to another by
predicates. This is an improvement on Web-1.0 and 2.0, where all that could be said for a link
is that one page links to another, optionally with some significance attached to the freeform
keywords used for the link. With RDF, all links are precisely meaningful: you know what it
means to be a foaf:nickName, as well as the fact that a particular entity has a given nickname,

for example.

Further, there is a language for querying RDF data, SPARQL, where the queries may be routed
over HTTP as a transport (by the data-provider making a /sparql endpoint visible). This gives
every SPARQL query a fixed URL for later reference.

Querying extends to browsing, made possible with generic RDF-browser utilities such as
OpenLink's ODE and Zitgist, or Tabulator, etc.

When URIs and URLs collide: Linked Data

A URL is the location of a document on the Web; its purpose is to express location only.

A URI is a unique identifier for an entity; there is implicit binding between an entity and its
metadata through a single identifier. In programming terms it may be regarded as similar to a
"variable name" or a symbol. As such there is no obvious need to use the HTTP protocol, ie to
name everything starting http://.... but it helps if you do.

An RDF triple- or quad-store contains URIs for subjects and predicates; it may be queried
purely as though it were an abstract object-database with no significance attached to the
"names" of the subjects retrieved.

However, when HTTP URIs are used as names for entities, they become real - they work - they
can be dereferenced. You can publish RDF data on the web simply, precisely because it takes
the form of URIs using the HTTP protocol. From an alternative perspective, the entire WWW
becomes an abstract database free to be queried. It allows data published by different
organizations to be federated, a process known as Linked Data.

As a bonus, a web-server can be configured to perform content-negotiation based on what kind
of a response a client requests; the same URL may return text/html (better,
application/xhtml+xml) for a web-browser, but a representation in application/rdf+xml for an
RDF browser requesting it.

Coming full-circle, to ease the production of data for existing webmasters, RDF may be
embedded in (X)HTML documents using either RDFa, GRDDL or eRDF markup; all these and
custom microformats may be translated into RDF using an appropriate agent (such as
OpenLink's Sponger, which can be seen in action at URIBurner).

Data Example

It is possible and desirable to define a mapping between relational and RDF-based databases.

In the most obvious form, for a given table, each field becomes a predicate and each row an
entity.

Taking as an example the case of PHPBB3's well-known phpbb_users table,

user_id user_type group_id user_permissions user_perm_from user_ip user_regdate username username_clean user_password user_passchg user_pass_convert user_email
1 2 1 null 0 null 1222764432 Anonymous anonymous null 0 0 <none>

one can obviously make a set of statements about this user,

<http://localhost/rdf/phpBB/user_1>

<http://localhost/rdf/phpBB/has_email> "root@localhost" ;

<http://localhost/rdf/phpBB/has_name> "Anonymous" .

etc.

Obviously this doesn't gain us much. However, you could further extend this to other well-
known ontologies; for example, formulate a mapping from PHPBB's discussion forums to
sioc:Forum entities, from posts within those forums to sioc:Post entities, etc; users can become
entities of type sioc:User, with data filled-out using the FOAF ontology to express their
properties (name, nickname, email address, homepage, etc). Then anyone using an RDF
browser will experience the well-known sense of hierarchy that SIOC brings, that "this forum"
contains "this thread" which contains "this comment" - because the SIOC ontology brings that
nesting structure by defining what `/contains/' means.

This adds value to the existing data as well as transforming it. (As an aside, consider that the
same hierarchy suffices to describe Amazon's website: a section (music/dvd/books/electronics)
might correspond to a sioc:Forum, with a product for sale being a sioc:Post and a review being
a sioc:Comment within it. This enables you to browse RDF by predicate, impossible with
current conventional search-engines.)

OpenLink Virtuoso has a system known as RDF Views, whereby this translation from
relational to RDF data is made dynamic; the triples are not realised but rather calculated from
the relational data on demand. This way you never have out-of-date data whilst waiting for
another import or sync.

You can write the scripts to implement these RDF Views by hand, but Virtuoso has automated
the whole process, both in general with transforming relational data from tables to RDF, and
specifically for the cases of PHPBB, Wordpress, MediaWiki and Drupal.

How to

Using the Conductor

Virtuoso has a generalized mechanism for automatically generating a canned RDF view from a
given table, available from the Conductor administrative interface.

First we create a simple test table:

SQL> create table timtest (id integer primary key, str varchar,
dt datetime);
Done. -- 36 msec.
SQL> insert into timtest values (1, 'hello world', now());

Done. -- 2 msec.
SQL> insert into timtest values (2, 'this is a test', now());

Done. -- 2 msec.
SQL> grant all on timtest to public;

Done. -- 2 msec.

Point your browser at http://localhost:8890/conductor/ and log in; navigate your way to
Database / RDF Schema Objects. You will see a list of existing tables in the given
schema/qualifier, and an action `generate single mapping' beside:

To test the results, we first observe the line in the RDF Views script where it declares the graph
IRI (a container for triples) it's going to create:

 create virtrdf:DB as graph iri
("http://^{URIQADefaultHost}^/db") option (exclusive)

Next, point your browser at http://localhost:8890/sparql/ , ie the /sparql query endpoint in the
Virtuoso instance. Set the default graph to http://localhost:8890/db and enter the
query

SELECT * WHERE {?s ?p ?o} limit 100

Execute it, and you should be presented with an HTML table showing the RDF data mapping
of your SQL table:

s p o

http://gentoo:8890/DB/timtest/id/1#this http://www.w3.org/1999/02/22-
rdf-syntax-ns#type http://localhost:8890/DB#timtest

http://gentoo:8890/DB/timtest/id/2#this http://www.w3.org/1999/02/22-
rdf-syntax-ns#type http://localhost:8890/DB#timtest

http://gentoo:8890/DB/timtest/id/1#this http://localhost:8890/DB#id 1
http://gentoo:8890/DB/timtest/id/2#this http://localhost:8890/DB#id 2
http://gentoo:8890/DB/timtest/id/1#this http://localhost:8890/DB#str hello world
http://gentoo:8890/DB/timtest/id/2#this http://localhost:8890/DB#str this is a test
http://gentoo:8890/DB/timtest/id/1#this http://localhost:8890/DB#dt 2009-07-20T16:41:59.000000
http://gentoo:8890/DB/timtest/id/2#this http://localhost:8890/DB#dt 2009-07-20T16:42:13.000000

As this table demonstrates, the RDF Views generator has decided:

to use /db as a graph IRI to identify this transformation project
to use /DB/timtest/id/ as a base for entity URIs
to use /DB/#predicate as a base for predicate URIs

Naturally you can use the auto-generated RDF View script as a starting point for your own

scripts, adding value through references to existing ontologies and using stored
functions/procedures to manipulate the values into a suitable string form for use in the URIs.
There is more information about this to be found in the documentation.

Existing Applications

In this case we follow the process of creating RDF data from an empty Virtuoso instance, using
PHPBB3 as an example.

Download, install and start Virtuoso:

zsh, gentoo 11:30AM virtuoso/ % ./bin/virtuoso-start.sh
Starting Virtuoso instance in [database]

By default this will give you an instance listening on port 1111 for SQL / ODBC connections
and port 8890 for HTTP.

Installing ODS

Point your browser at http://hostname:8890/conductor/ and log in to the conductor. Choose the
System Admin tab and Packages there.

Select a handful of ODS packages, such as Discussion, Framework and Wiki and definitely
PHPBB3, iSPARQL and rdf_mappers and press `install'.

Setting up ODS & PHPBB3

Background: when new ODS (WebDAV) users are created, a trigger automatically adds them
as PHPBB3 users. This is the preferred way to register PHPBB3 users.

Point your browser at http://hostname:8890/ods/ and click sign-up. Account-creation is simply
a case of filling in the form; you will be presented with a view of your account profile when
complete.

Point your browser to http://hostname:8890/phpBB3/ - this installation is the result of installing
the VAD package earlier. Log in as the user you created above and peruse the default post etc.

By extension, the system `dba' user has been made administrator of this phpBB instance.

As an interface straight into the RDF data, point your browser at
http://hostname:8890/phpBB3/user/someuserid . This will present you with an instance of the
OpenLink RDF Browser, with http://hostname:8890/phpBB3/user/someuserid as the source

URI from which to start browsing.

This is implemented using the same sort of content-negotiation as mentioned previously. If you
experiment with curl(1) on the commandline, you'll see that the URL
http://localhost:8890/phpBB3/user/tim gives an HTTP 303 `see other' response:

zsh, gentoo 5:14PM virtuoso/ % curl -I
'http://localhost:8890/phpBB3/user/tim'
HTTP/1.1 303 See Other
Server: Virtuoso/05.09.3035 (Linux) i686-generic-linux-glibc26-32
VDB
Connection: close
Content-Type: text/html; charset=UTF-8
Date: Fri, 15 May 2009 17:14:06 GMT
Accept-Ranges: bytes
Location: http://localhost:8890/rdfbrowser/index.html?
uri=http%3A//localhost:8890/phpBB3/user/tim#this
Content-Length: 0

However, treated as a URI, by requesting RDF data, one sees:

zsh, gentoo 5:15PM virtuoso/ % curl -H 'Accept:
application/rdf+xml' \
-I 'http://localhost:8890/phpBB3/user/tim'
HTTP/1.1 200 OK
Server: Virtuoso/05.09.3035 (Linux) i686-generic-linux-glibc26-32
VDB
Connection: Keep-Alive
Date: Fri, 15 May 2009 17:15:14 GMT
Accept-Ranges: bytes
Content-Type: application/rdf+xml; charset=UTF-8
Content-Length: 1457

http://localhost:8890/phpBB3/user/tim

Click around! Browse the data - check the SVG views and `raw triples' etc. Explore the links
from statements about a given phpBB3 users to forums and articles posted by them.

For background reading: see this video of PHP hosting on Windows Vista.

Other PHP Applications

The above process can be repeated for MediaWiki, Drupal and WordPress; OpenLink has a
VAD package for each of these applications and existing documentation pages with the same
workflow as the above phpBB3 example:

Application DataSpace Documentation Characteristic data URI
phpBB3 Bulletin-board, forums phpBB http://localhost:8890/phpBB3/user/me

Drupal Content-management
system Drupal http://localhost:8890/drupal/user/me

WordPress Blog and CMS WordPress http://localhost:8890/wordpress/user/me

MediaWiki Wiki documentation
server MediaWiki http://localhost:8890/MediaWiki/user/me

Browsing

Each of these examples shows how to get "my URI" out of these things and play with an RDF

mapping straight away. Additionally you can use a standalone RDF browser, such as the
OpenLink Data Explorer, Tabulator or Disco to browse the data.

Developers: building Virtuoso Open-Source with PHP
support
Here we walk through the process of hosting PHP in Virtuoso, building from compiling sources
to extensions, writing a simple web-application and viewing data.

At this point it would be wise to double-check the top-level README.php5 file in the open-
source distribution, as it may contain more up-to-date instructions.

There are three stages involved in using a custom build of PHP with Virtuoso;

build PHP
add any required PHP modules
configure and build Virtuoso to reference the PHP you built.

Building PHP

In the event that you have to recompile the PHP hosting module yourself for use with an
existing application, the following options are a minimum starting point:

./configure \
 --prefix=/usr/local/php5 \
 --enable-maintainer-zts \
 --with-tsrm-pthreads \
 --enable-embed=shared \
 --disable-static \
 --with-config-file-path=. \
 --disable-cgi \
 --disable-cli \
 --disable-ipv6 \
 --with-zlib \
 --with-iodbc=/usr

The ZTS and TSRM pthread options are particularly important; without them, Virtuoso will
have serious threading incompatibilities. Note that many or most Linux distributions do not use
these options, as they tend to package PHP for use as mod_php with the Apache web-server.

For reference, OpenLink uses the following configure options:

zsh/scr, gentoo 2:17PM php-5.2.10/ % ./configure \
 --prefix=/usr/local/php5 \
 --enable-maintainer-zts \
 --enable-embed=shared \
 --with-config-file-path=. \
 --with-tsrm-pthreads \
 --disable-static \
 --disable-cgi \
 --disable-ipv6 \
 --without-mysql \
 --without-pear \
 --enable-bcmath=shared \
 --enable-calendar \
 --enable-dbase=shared \
 --enable-dba=shared \
 --enable-dom=shared \
 --enable-exif=shared \
 --enable-ftp=shared \
 --enable-gd-native-ttf \
 --enable-mbstring=shared \
 --enable-pdo \
 --enable-shmop=shared \
 --enable-soap=shared \
 --enable-sockets=shared \
 --enable-sysvmsg=shared \
 --enable-sysvsem=shared \
 --enable-sysvshm=shared \
 --enable-wddx=shared \
 --enable-xmlreader=shared \
 --enable-xmlwriter=shared \
 --with-bz2=shared \
 --with-curl=shared \
 --with-gd=shared \
 --with-iodbc=/usr/local/iODBC \
 --with-ldap=shared \
 --with-mime-magic=shared \
 --with-openssl=shared \
 --with-pdo-odbc="generic,/usr/local/iODBC,iodbc,\
 -L/usr/local/iODBC/lib,-
I/usr/local/iODBC/include" \
 --with-sqlite=shared \
 --with-xmlrpc=shared \
 --with-xsl=shared \
 --with-xsl=shared \
 --with-zlib \
 && nice make
...

You should pick and choose the options starting from the minimal requirements and whatever
modules your application requires and/or are likely to be useful from the above. Note that many
of these options require external libraries to build (eg openldap, bzip2, curl, libxml2, etc).

Some time later, the build completes and we install PHP:

...
Build complete.
Don't forget to run 'make test'.

zsh/scr, gentoo 12:56PM php-5.2.10/ % sudo make install
Password:
Installing PHP SAPI module: embed
Installing build environment: /usr/local/php5/lib/php/build/
Installing header files: /usr/local/php5/include/php/
Installing helper programs: /usr/local/php5/bin/
 program: phpize
 program: php-config
Installing man pages: /usr/local/php5/man/man1/
 page: phpize.1
 page: php-config.1

Building Virtuoso with PHP

Now proceed to build Virtuoso, being sure to use the --enable-php5 option to configure:

zsh/scr, gentoo 4:34PM virtuoso-opensource-5.0.11/ % ./configure
\
 --prefix=/usr/local/virtuoso \
 --enable-php5=/usr/local/php5 --enable-imagemagick --
with-readline \
 --with-iodbc=/usr/local/iODBC

When it's done configuring, check the BUILD_OPTS line in the summary output contains the
word `php5':

Options
 BUILD_OPTS xml ssl imsg pldebug php5 pthreads
readline odbc

Then proceed to use make and make install as usual.

Once you have installed Virtuoso, you should copy the php5 hosting library, libphp5.so
and extensions (*.so) into place in the
/usr/local/virtuoso/lib/virtuoso/hosting/ directory; the php.ini file
goes in the database directory, by default
/usr/local/virtuoso/var/lib/virtuoso/db/ .

Enabling the PHP Hosting plugin

Now we must enable the hosting module; Virtuoso has a standard module system for the
optional inclusion of various areas of functionality, enabled through the `Plugins' section of
virtuoso.ini:

[Plugins]
LoadPath = ../hosting
Load1 = plain, wikiv
Load2 = plain, mediawiki
Load3 = plain, creolewiki
Load4 = plain, im
Load5 = attach, libphp5.so
Load6 = Hosting, hosting_php.so

Here we see the wiki markup parsers, an imagemagick plugin (for use in the ODS-Gallery
application), and a link to the PHP library.

To host a PHP application within Virtuoso, it should suffice to enable the relevant lines (5 and
6) above.

Using PHP5 and Virtuoso (Commercial Edition)

OpenLink's commercial Virtuoso packages already come with PHP hosting support; to use your
own library, simply copy the libphp5.so and/or any extensions required into place:

cp /usr/local/php5/lib/libphp5.so hosting/php/

Aside: failure to copy libphp5.so into the same place as is referenced by the [Plugins] section in
virtuoso.ini will give rise to the following error:

16:28:50 INFO: { Loading plugin 7: Type `attach', file
`libphp5.so' in `/usr/local/virtuoso/lib/virtuoso/hosting'
16:28:50 ERROR: FAILED plugin 7: Unable to locate file }

Compiling your own PHP extensions

If you build your PHP as above, extra extensions can be added as required afterwards.

Our commercial builds of Virtuoso include the following PHP modules as standard:

apc dbase ldap soap sysvshm
bcmath dom mbstring sockets wddx
bz2 exif mime_magic sqlite xmlreader
curl ftp openssl sysvmsg xmlrpc
dba gd shmop sysvsem xmlwriter
xsl

In this case, all you need do to enable a module is uncomment it in the php.ini file (search
for `Extensions'):

;;;;;;;;;;;;;;;;;;;;;;
; Dynamic Extensions ;
;;;;;;;;;;;;;;;;;;;;;;
;;extension=apc.so
;;extension=bcmath.so
;;extension=bz2.so
;;extension=curl.so
;;extension=dbase.so
...

As a worked example, we continue by compiling the Alternative PHP Cache (APC) PHP
extension for ourselves.

Having downloaded and unpacked the sources, run the phpize command installed as part of
your new build of PHP:

zsh/scr, gentoo 5:06PM APC-3.1.2/ % /usr/local/php5/bin/phpize
Configuring for:
PHP Api Version: 20090626
Zend Module Api No: 20090626
...

zsh/scr, gentoo 5:05PM APC-3.1.2/ % ./configure --cache-
file=config.cache \
 --prefix=/usr/local/php5 \
 --enable-apc-mmap \
 --with-php-config=/usr/local/php5/bin/php-config
\
 --disable-static
...
appending configuration tag "CXX" to libtool
configure: updating cache config.cache
configure: creating ./config.status
config.status: creating config.h

zsh/scr, gentoo 5:07PM APC-3.1.2/ % make
/bin/sh /home/tim/C/APC-3.1.2/libtool --mode=compile cc -I. \
-I/home/tim/C/APC-3.1.2 -DPHP_ATOM_INC -I/home/tim/C/APC-
3.1.2/include \
-I/home/tim/C/APC-3.1.2/main -I/home/tim/C/APC-3.1.2 \
-I/usr/local/php5/include/php -I/usr/local/php5/include/php/main
\
-I/usr/local/php5/include/php/TSRM -
I/usr/local/php5/include/php/Zend \
-I/usr/local/php5/include/php/ext -
I/usr/local/php5/include/php/ext/date/lib \
-DHAVE_CONFIG_H -g -O2 -c /home/tim/C/APC-3.1.2/apc.c -o
apc.lo
...

zsh/scr, gentoo 5:08PM APC-3.1.2/ % sudo make install
Password:
Installing shared extensions:
/usr/local/php5/lib/php/extensions/no-debug-zts-20090626/
zsh/scr, gentoo 5:08PM APC-3.1.2/ %

To use the extension,

copy it into the ../hosting/php/ directory
edit the php.ini file and search for `Extensions'. Add and remove lines there as required.

Aside: note that if you fail to copy the libphp5.so and/or extensions (*.so) into the right
directory, you'll have a mismatch with the prebuilt versions, leading to this error:

16:05:04 { Loading plugin 7: Type `Hosting', file
`hosting_php.so' in `../hosting'
16:05:04 Hosting version 3034 from OpenLink Software
16:05:04 PHP engine version 5.2.7-dev
16:05:04 PHP Warning: PHP Startup: apc: Unable to initialize
module
Module compiled with module API=20060613
PHP compiled with module API=20090626
These options need to match
 in Unknown on line 0

*** Please fix the above issue(s) before trying again.

Testing

As with any other PHP environment, it makes sense to test the setup:

Create a file (say info.php) in the ../vsp/ directory containing the text:

<?php
 phpinfo();
?>

This file can be downloaded: info.php

Copy this file into the ../vsp/ directory of your Virtuoso installation and point your browser at
the relevant URL - eg http://localhost:8890/info.php and see what the output of phpinfo() is.
You should see a section with title corresponding to the module you compiled - here `APC':

Bringing it together: PHP, web-apps and data

Given that Virtuoso provides not just a webserver with PHP hosting ability, but the whole
backend ODBC-compatible database environment as well all in one package, it makes sense to
be able to connect back to the hosting RDBMS instance from within your PHP
application/script.

To ease this process, Virtuoso's PHP-hosting module adds support for a parameter to identify
the "local DSN"; normally there is a DSN configured called "Local Virtuoso" but in case that
has been changed, or some other instance should be used, there are parameters in php.ini that
can be specified:

[Virtuoso]
virtuoso.logging = On
virtuoso.local_dsn = Local Virtuoso
virtuoso.allow_dba = 0

The `virtuoso.allow_dba' property controls whether the administrative dba user can be used as
the username to connect to the ODBC data-source; by default, it cannot, as a security measure.

Using this in your application is simple. First, wherever you would previously have had to
compose an ODBC connection-string, you can now just drop this function into place:

<?php
 $con=odbc_connect(__virt_internal_dsn(), "", "");
?>

The results of the __virt_internal_dsn() function may be configured through the
Virtuoso Conductor:

point your web-browser at http://localhost:8890/conductor/ (or hostname as appropriate)
log in as dba, and navigate to "web application server" and "Virtual Domains and
Directories"
expand the relevant hostname (or default) and click `edit' on the directory corresponding
to the URL in which your PHP application resides

Click "Edit"
scroll down to set the VSP user

choose an appropriate user as which your PHP application should run

The function verifies that the Virtual Directory has been properly configured with a user valid
for SQL logins and not disabled, else it logs a message and returns FALSE.

Permissions Note: If you are deploying an application that runs as a specific user, permission
must be granted for it to access tables.

Additionally, for deploying an application package (eg as a VAD of your own), you can export
the virtual-directory specification and have it create your endpoint, including specifying a user
as which it should run, all executable as SQL/PL from within your package.

 -- Create and use the MYAPP schema
 use MYAPP;

 -- Create a user myapp
 db.dba.user_create (
 'myapp', -- Account name
 uuid (), -- Random UUID as
password
 vector ('LOGIN_QUALIFIER', 'MYAPP',
 'SQL_ENABLE', 1,
 'DAV_ENABLE', 0,
 'FULL_NAME', 'MYAPP Administrator'));
 db.dba.vhost_remove (lpath=>'/myapp');
 db.dba.vhost_define (
 lpath=>'/myapp',
 ppath=>'/testapp',
 is_dav=>0,
 is_brws=>0,
 vsp_user=>'myapp',
 def_page=>'myapp.php');

The Pièce de Résistance

Finally, putting it all together, a simple sample PHP script: home-grown build of PHP, dynamic
RDF data (created using an RDF view above), accessed using SPARQL over SQL, via ODBC
using the __virt_internal_dsn() function:

Please re-read the previous section "putting it all together", above, and note the requirements
for permissions to be granted on relevant tables to the user as which your PHP application will
run.

grant select on rdf_quad to tim;

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>PHP ODBC test</title>
 <style type="text/css">
body { padding: 1em; }
pre { padding: 0.3em; background-color: #e0e0e0; border: solid
1px silver }
 </style>
</head>

<body>
 <h1>Test PHP / ODBC / Virtuoso connection</h1>
 <hr />

 <p>The __virt_internal_dsn() function returns:</p>
<pre>

<?php
 ini_set("odbc.default_cursortype", "0");

 $con=odbc_connect(__virt_internal_dsn(), "", "");
 if($con) {
 printf("<p>Connected [%s].\n</p>\n", $con);

 $query="sparql select distinct ?s ?p ?o from
<http://localhost:8890/db>
 where { ?s ?p ?o . } limit 100";

 print "Executing query [$query]
\n";
 $rs = odbc_exec($con, $query);

 $err=odbc_errormsg($con);
 print "Current error state: [$err]
\n";

 print "Results:
\n";
 odbc_result_all($rs, "border=2");
 odbc_close($con);
 } else {
 print "<p>Failed to connect!</p>\n";
 }
?>

?>

 <hr />
</body>
</html>

This script can be downloaded here: sparql-retrieve.php

Results:

The _ virt_internal_dsn() function returns:

DSN=Local Virtuoso;UID=tim;PWD=censored

Connected [Resource id #2].

Executing query [sparql select distinct ?s ?p ?o from <http://localhost:8890/db> where { ?s ?
p ?o . } limit 100]
Current error state: []
Results:

s p o

http://localhost:8890/DB/timtest/id/1#this> http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> http://localhost:8890/DB#timtest>

http://localhost:8890/DB/timtest/id/2#this> http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> http://localhost:8890/DB#timtest>

http://localhost:8890/DB/timtest/id/1#this> http://localhost:8890/DB#id> 1

