
Virtuoso Database

Row Level Security

Abstract
This whitepaper introduces the Row Level Security feature in the Virtuoso Database.

This functionality is also known as fine-grained access control or policy based

security. This paper also covers why you might want to use row level security and the

advantages of using row level security and technical details regarding policies and

SQL complication.

Introduction

What is Virtuoso Row Level Security

Traditionally, database administrators assign access "privileges" or "roles" at the table

and column level. Programmers writing applications are often required to write

additional security layers of code on top of these tables in order to grant or restrict

access to data stored therein.

Any other data access outside these applications could bypass this security and

retrieve sensitive data.

Row level security in Virtuoso provides an additional level of security in the database

as a way to protect data at the row level so that this mechanism cannot be

circumvented.

Why Row Level Security in Virtuoso

Physically disconnected systems can be troublesome in an increasingly integrated

corporate IS environment. Building access rules into applications can be complex and

can run the risk of being circumvented by direct access to the database through other

tools or utilities.

This is one of the primary reasons some database level security enforcement is

required in applications today. SQL provides table and column level privileges that can

be granted to users and roles. This type of security level does not address the

situation where different users have differing rights to sections of one table, for

example only to data about their own department.

This level of security in a table is typically done with views, which use hard-code

selection criteria. The table itself will not be granted but views to specific ranges of

rows will be granted to users of the applications or data access tools.

Virtuoso row level security removes the need for the cumbersome requirements of

administration of views and requiring applications to use a different view for each type

of application or end-user. Additionally the database also does not need to be split out

into different departments and stored in separate tables to provide or restrict access

thus cutting down on administrative work.

Row Level Security
Row level security or policy based security allows the SQL compiler to make choices

according to which user is accessing any given table. Extra conditions will be

introduced into a SQL statement at compile time in order to limit the user to a specific

range of rows. This will apply equally to reading and modifying the table.

Row Level Security Advantages
There are several advantages to incorporating row level security in to the database.

These include:

Implementation of security policies that is difficult to maintain with views or

queries.

Isolating applications from implementing security polices

Multilevel security and fine grained security with row-level access control

Integrated security across the entire set of applications accessing the

database deployed in the enterprise

Policy and SQL compilation
A policy is a SQL function that will be called by the SQL compiler each time a table

having the policy is accessed in a user's query or stored procedure. The policy can

return extra conditions, which will be anded to the conditions in the query. After this is

done, the new query is optimized and compiled.This mechanism makes it possible to

transparently customize which information a user account sees without having to

maintain a multiplicity of static views. This mechanism cannot be subverted by a user

and will work no matter what application is used against the database.

As in Figure 1 detailed below, let us consider the example of a table of classified

documents.To access a document, the user needs to have a record in a 'need-

to-know' table, which forms a many-to-many relationship between classifications and

users. If the user is a member of the security_auditor role, all documents will be

accessible. Users themselves may neither read nor update the 'need-to-know' table.

Code Example: Creating a Virutoso Row Level Policy

Figure 1

create role staff;

create role security_auditor;

grant staff to security_auditor;

create table document (d_id varchar, d_changed datetime, d_author varchar, d_classificatio

create table document_access (da_classification int, da_user varchar,

primary key (da_d_id, da_user));

grant all privileges on document to staff;

grant all privileges on document_access to security_auditor;

create procedure d_policy (in tb varchar, in op varchar)

{

 if (user_has_role (user, 'security_auditor')) return '';

 if (user_has_role (user, 'staff'))

 return 'exists (select 1 from document_access where da_user = user and da_classific

 d_classification)';

 return '1=2';

}

table_set_policy ('document', 'd_policy', 'IDUS');

Breaking down the Row Level Security Operation

These operations show above in Figure 1, define two roles:

staff which is not granted access to document_access.

security_auditor, which configures document_access.

The policy function will, for each query-accessing document, check if the user is a

member of security_auditor.

If the user is a member, there will be no extra conditions and all rows will appear. If the

user is a member of staff, an extra condition checking the existence of a need to know

is added. This will check that there is an entry in the document_access where the

accessing user is granted access to the document's classification. If the user is

neither member of staff nor of security_auditor, no rows will be returned since the

always false condition of 1=2 is added.

Besides SQL selects, the policy rule will apply to SQL inserts, updates and delete

operations.This is caused by the 'IDUS' parameter to table_set_policy. Different

policies may be defined for the select, insert, update and delete operations. Most

often, these will be the same. Only one policy function is allowed per table and

operation. In order to set a policy, one must be either the table's owner or dba.

Policies do not apply to dba users.

We note that the 'need to know' check accesses a table that is not granted to staff,

even for reading. This is OK, since the predicate coming from the policy function has

access rights of the owner of the policy function. The predicate is treated like a view

body that was granted to the user making the query without requiring that component

tables of the view were granted.

Since policies are processed at the level of SQL compilation, these will equally apply

to local and remote tables.

Queries inside stored procedures are subject to policy. The user whose policies are

consulted is the owner of the stored procedure.The policy conditions are fixed at the

time of compiling the procedure. Re-assigning a policy counts as a change to the

table, causing recompilation of all concerned procedures, triggers and client

statements.

Conclusion
Policies are an effective way of implementing a virtual private database, providing for

isolation between classes of users of the same application. The maintenance

overhead is small compared to the trouble of maintaining views for each class of

users. The table concerned remains one schema object with one name.Policies can

be set and maintained without modification to applications and existing applications

can be made to use policy based access control at no additional cost.

