
Virtuoso Virtual Database

Executive Summary
Time breeds diversity in the contemporary IT organization. As business goals mature,

the application landscape changes with upgrades and wholesale replacements of

capital line systems. One central fact has become clear – as this process of

maturation evolves, underlying data and systems multiply.

An entire market segment has grown around enterprise middleware. The IT DBMS

infrastructure business has struggled mightily to overcome data diversity, yet

somehow remains proprietary in its essence.

OpenLink Software's Virtuoso Universal Server is one outstanding example of a

platform that successfully generalizes the enterprise data model in all of its diversity.

As a Virtual Database, Virtuoso connects to multiple databases and creates a unified

data model. As a high-performance object-relational database with Web Services

functionality, Virtuoso provides the environment for core applications that extend

beyond parochial systems. Spanning the gap between Virtual Database and Core

Data storage platform, Virtuoso provides an end-to-end SOA and XML suite of

transformative services.

As all IT evolution issues boil down to data integration. We will focus on the Virtuoso

VDB general architecture, query processing, optimization, and distributed transaction

issues.

Virtuoso Virtual Database (VDB)

Virtuoso's VDB engine provides unified and transparent access to relational data

residing on any ODBC/JDBC compliant DBMS. The tables from any number of

databases may be linked o a Virtuoso schema, creating a unified data model that may

be accessed by the full suite of Virtuoso application functions.

Virtuoso VDB in focus

Information integration is a growing challenge; most organizations have critical

information spread across a multi-vendor mix of databases. These distributed

systems, by design or organized chaos, are often scattered about multiple physical

locations.

Consolidation of diverse data platforms is never easy or practical due to the

restrictions of our application requirements. These line applications breed their own

form of stasis. And, while stability is the watchword of our IT faith, it certainly limits our

agility and opportunity to build out innovative new services and entering, for example,

the Web Services arena. Ideally, the far seeing IT captain will seek every opportunity

to access and unify data as a single model, preserve stability of current systems, and,

eventually, build a new bridge to the brave new world of Web Services.

Virtuoso Universal Server serves the above vision by presenting collections of

disparate legacy systems as a seamless whole. Virtuoso also takes step forward as a

hosting platform, application logic server, and Web Services platform.

Benefits of the VDB

The best middleware is no middleware at all; to optimally redefine a multi-vendor

patchwork of databases as a unified model where the middle tier vanishes is the Holy

Grail. If in reality we cannot wave a wand and dissolve this middle-component, let the

choice be as robust and transparent as possible.

This unified model should be available to any application through a single point of

access, speaking a single SQL dialect. Virtuoso's VDB offers a full spectrum of client

API's, including ODBC, JDBC, OLE/DB and .net data adapters.

Sans wand, discrepancies and quirks of the underlying database systems are hidden

by Virtuoso's VDB, as the client API and SQL dialect are now normalized to a uniform

standard. The VDM also automatically optimizes query execution paths, and provides

a single point of security administration and access privileges to the underlying

universe of corporate data.

A virtual database should also be a powerful database engine in its own right, with the

heart of an enterprise lion, capable of internally executing all DBMS operations such

as joins, storage of large interim results sets, maintaining local tables, indices etc. The

Virtuoso object relational core engine is capable of hosting capital line applications

moved from other databases through the VDB, or via a migration strategy using

sophisticated replication methods.

In our new age of service-oriented architectures, Virtuoso brings web services

capabilities to bear as a vital point of entry to the virtual database and the world of

Open XML standards.

Let's see how Virtuoso makes this happen:

Virtuoso Database Related Components
Virtuoso Universal Server's database is comprised of standard client application

interfaces, server side functions, server systems interfaces to external transaction

monitors, and OpenLink's famed Universal Data Access technology for remote

databases. In most cases, Virtuoso off-loads operations to the attached data source; if

a feature is not available on the remote database, the function will execute in the

Virtuoso VDB engine.

Clients

ODBC 3.5 for Windows and Unix

OLE/DB 2.0 for Windows

JDBC 3.0 for JDK 1.4, JDBC 2.0 is available for JDK's 1.2 and 1.3

.Net data provider 1.1

Server

SQL 92/2K compiler.

Stored procedure language.

Local DBMS, including tables and index management, row level locking, local

transaction logic, logging, schema management and all other traditional DBMS

functions.

Virtual database engine handling query composition and execution for remote

databases.

Database drivers - Virtuoso uses ODBC drivers supplied by either OpenLink or

the remote database manufacturer for connecting to data on remote

databases.

Distributed Transactions

Virtuoso is compatible with MS DTC on Windows for enlisting compatible data

sources into distributed transactions.

Virtuoso can be a resource manager under MS DTC, JTA or Tuxedo (XA). This

means that an external transaction monitor manages the commit/rollback

/recovery of changes affecting data stored in Virtuoso.

To this effect, Virtuoso offers a resource manager library for linking with

Tuxedo and a XA aware JDBC 3.0 client for use by JTA monitors.

All Virtuoso clients for Windows, including ODBC, OLE/DB and .net providers

support MS DTC interfaces.

SQL Capabilities

Virtuoso supports SQL 92 with multiple SQL 2K features.

Full SQL 92 data types, including wide characters, text and binary large

objects, decimal floating point, datetimes with timezone etc.

SQL 2K user defined types, including inheritance, methods, polymorphism,

and persistence of user defined type instances as column values.

Large selection of aggregates plus possibility for user defined aggregates.

Basic OLAP extensions, grouping sets, rollup and cube.

All SQL structures such as derived tables, sub queries, unions and other set

operations, all join types etc.

All of these features are available to remote databases attached via Virtuoso's VDB.

Distributed Query Considerations
Virtuoso uses cost based SQL optimization that evaluates join orders and join types,

additionally factoring in communication overhead associated with remote data

sources.

Let us consider the choices involved in compiling the following query, against the

well-known Northwind database:

Figure – SQL Query against Northwind Database

select ProductName, p.CategoryID, CategoryName

from Products, V2.Categories c

where

p.CategoryID = p.CategoryID;

Now let us say that Products is a local table and V2.Categories is a remote table.

The attached source SQL compiler may consider the following possibilities:

Loop over categories on the remote and look up the product. Suboptimal
performance penalty due to the lack of an index on a product's category.

Loop over Products and seek the category by doing a lookup on the remote.

Suboptimal due to round-trip session to remote in order to get the

category name for each product

Read categories and make a hash table from id to category name. Then loop

over products and look up the name from the hash.

Much better Optimization: because there is only one message to the

remote for filling the join's temporary hash resulting in a table scan of

products locally with very fast lookup for returning category name.

To effect these optimizations, Virtuoso's SQL compiler counts the rows in each table,

available indices, primary keys, and the count of distinct values for each column (and

possibly a histogram indicating the distribution of values for a column). Very

sophisticated, indeed.

Alternatively, if the query is modified to retrieve one product by adding an extra

condition for ProductID = 111, then the compiler will change the join into a loop join,

where the outer loop is on the product and the inner on category. In this case of

retrieving one category, it is best to retrieve category by id, rather than create a hash

of categories. Repetitive retrieve operations benefit substantially from the hash join.

Virtuoso measures server query latency and data transfer rate whenever a remote

table is attached to a Virtuoso schema. As a result of these empirical tests, alternative

SQL execution plans are composed for performance optimization. A remote table can

be dropped and subsequently reattached to a Virtuoso schema, thus bringing all meta

information (including access times, index availability, columns etc.) up to date. Stored

procedures or queries (depending on the table) will be automatically recompiled for

any potential performance enhancement.

If both tables are located within same remote database, a query would be passed

through directly. In the event of a 'pass through' query, Virtuoso will evaluate the join

order and endeavor to optimize the query using the most advantageous join order.

However, final decisions on join order and join type are the province of the remote

database.

Remote and local tables are treated identically when gathering SQL optimization

statistics.

VDB Adaptation to Remote Databases
SQL dialect variations are a vexing integration challenge in a multi-vendor

environment. To ameliorate this curse, Virtuoso exploits ODBC metadata functions in

order to determine which operations may be relayed to a particular database. Virtuoso

uses highly optimized, data source specific methods for the market leading remote

databases.

Having the flexibility to exploit specific 'power features' is crucial when accessing

legacy systems that support functions beyond the SQL standard, such as outer joins,

sub-queries, and OLAP extensions. Without this 'fine grained' adaptability to specific

database features, Virtuoso would be forced to execute a sub-optimal query.

Cursors Functions

Virtuoso provides scrollable cursor functionality for bookmarks and cursor state

information. Virtuoso will translate scrollable cursor event operations into discrete

forward only operations on the remote database, effectively hiding differences in

scrollable cursor support between attached databases.

Legacy Business Logic

Most database systems allow business logic to be expressed as triggers and stored

procedures. Virtuoso takes the middle-tier a step further by allowing the attachment

and marshaling of stored procedure from VDB attached remote databases. These

procedures (and the program logic they encapsulate) are now eligible to be called as

a local Virtuoso stored procedures. The power of 'rounding up' SQL stored procedures

is made manifest by exposing these procedures as web services, or as know in the

vernacular of SOA, executable end-points.[1]

Virtuoso allows any stored procedure to return a result set as a sub-table within a SQL

query. Procedure result sets may therefore be joined with tables and other result sets

to be sorted, filtered, or otherwise processed. This is ideal for adding non-relational

data sources into the virtual data model. One prime example would be a stored

procedure for reporting.

Procedure tables can be expressed in any hosted language, thus allowing complex

logic to be added to the relational world.

See the Web Services and Run Time Hosting white papers for more information.

Administration
Virtuoso is compact and easy to install and administer. In a virtual database setting,

administration consists of the following:

Installation

Defining remote data sources and attaching tables from them.

Defining local user accounts, roles and granting permissions to them.

After these steps, which can be performed through a web interface, Virtuoso is

operational as a virtual database.

For more advanced use, consider the following options:

Attaching stored procedures from remote databases and publishing these as

web services.

Developing business logic in Virtuoso's stored procedure language or any of

the hosted languages, including Java and .net languages.

Creating a local database on Virtuoso using regular SQL.

Replicating and synchronizing data between Virtuoso and other databases,

including MS SQL Server, Oracle, DB2, Sybase and Informix. For the

aforementioned databases, a 2-way incremental replication mechanism is

supported. Any ODBC data sources can be imported/exported without

synchronization to and from Virtuoso.

Hosting web interface logic in ASP. Net, PHP, PERL, Python, JSP or Virtuoso's

own VSPX dynamic web page language.

Publishing data as XML, using mapping schemas to translate relational data to

XML.

Developing XML oriented applications using Virtuoso's XSLT, XQuery and

XML indexing capabilities.

A web interface allows access to Virtuosos complete repertoire of web services and

replication methods. Dynamic SQL clients may be used for custom development.

See the relevant white papers for more information.

Local Database Engine
Virtuoso has a high performance relational database engine with the following key

features:

Clustered B tree index, data follows the primary key inside the index tree.

Row level locking with dynamic escalation to page locking.

All four isolation levels, from dirty read to serializable.

Full text index for text and XML columns. The index supports score, proximity,

boolean connectives and a special mode capturing XML hierarchies in the

data. Additionally, non-text data can be stored in the text index for high

performance retrieval along with text data.

On-line incremental backup. No activity needs to be interrupted for backing up.

The server keeps track of pages changed since last backup for incremental

backup.

Read ahead for indexes and large objects.

Multithreaded I/O with background flush of dirty buffers and read ahead

activity scheduled on a thread per device basis for best throughput. Striping

consecutive pages on different devices is recommended.

32 terabytes address space per database.

The VDB employs local engine for ordering by group or hash join temporary spaces.

Distributed Transactions
Virtuoso can operate with external transaction monitors including MS DTC, JTA and

Tuxedo.

Native Virtuoso transactions for local and remote database reads/updates are

guaranteed full ACID integrity.

Using a transaction monitor with Virtuoso will allow a two-phase commit messages

from the transaction monitor. Transactions at the prepare phase are logged in order to

enable commit cycle failure recovery.

Clients may enlist a Virtuoso connection into a global transaction using MS DTC or XA

transaction monitors,. With MS DTC, a remote database operation undertaken on

behalf of Virtuoso is enlisted into the global transaction. A Virtuoso stored procedure

may also initiate distributed transactions under MS DTC.

A Virtuoso transaction enlisted into an XA transaction may also enlist other data

sources if the middleware supports this.

Virtual Database Security
Virtuoso supports identical role base security for local and remote objects. Roles may

inherit from other roles, user accounts may also belong to multiple roles. Accounts

and/or roles are legitimate grantees for table, stored procedure or user defined type

permissions.

Virtuoso's row level security features provide enhanced security for attached legacy

systems accessed via the Virtuoso VDB. User access to restricted data may be

limited by a table specific policy. This mechanism frees security administrators and

developers from having to define, maintain and reference views for special user

classes. See the Row Level Security white paper for more.

Administrator privileges are required for attaching tables from remote databases into a

Virtuoso schema. Administrators must provide login credentials in order to effect

remote database attachment. Virtuoso will invoke the administrator's credentials when

connecting to a remote database via a user request, while hiding access to the login

details. A user's access to remote tables and columns are subject to SQL grants.

It is also possible to implement API functions to provide a different login on a remote

database. Most of the time, this is unnecessary, however audit trail logging on remote

databases may need users to be logged as distinct accounts.

Conclusion
Virtuoso offers a complete virtual database solution, adaptable to a wide range of

environments. Virtuoso preserves existing investments in business logic, stored

procedures, and design. As a transparent distributed query engine, Virtuoso

normalizes data location and overcomes SQL Dialect limitations of attached systems.

Disparate infrastructure becomes directly accessible via a unified API, covering the

major standards of ODBC, OLE/DB, JDBC and .net.

Virtuoso encourages incremental deployment, with minimal or no re-engineering of

existing processes, and straightforward installation.

Virtuoso also opens a migration path to the world of web services, becoming a

gateway between time-tested functions in your existing infrastructure, and forward-

looking XML-based services oriented architectures.

Learn More
Virtuoso Documentation
Virtuoso Tutorials

[1] See article Virtuoso Web Services infra.

