
XML with Virtuoso and XQuery

Introduction
XML has passed the point of ubiquity by establishing a standard format for data

interchange. XML is today's foundation for building interoperability into new systems

and applications; information architects use XML, XML data definitions (schemas) and

messaging formats (SOAP, XML-RPC) as the clay with which to form IT system

sculptures of Michaelangelian proportions.

In an imperfect world, XML's ideal descriptive constructs must make allowances for

format translation and transformation. When fetching data from relational data

sources, or receiving flat files over direct HTTPS, one must have tools to bend that

which is given, to that which is actually needed.

XSLT has been, for the past several years, the Swiss army knife of XML

transformation. Every XML processor and application server has some method to

apply an XSLT transform to an instance of XML; for once XML is 'document en model',

standard XPATH 2.0 is used within the framework of XSLT language.

With XML well adopted as a data type in the database universe, and native XML

storage systems growing in market share, the recently (W3C) blessed XQuery is

emerging as a popular method of manipulating and transforming XML data.

XSLT vs. XQuery in Virtuoso
OpenLink Software's Virtuoso Universal Server is a virtual database integration

engine joined to a highly integrated web application platform . Virtuoso unifies data

storage systems and provides a powerful suite of application delivery services. These

features allow Virtuoso to act as a catalyst for the creation of composite applications

based on Web Services standards.

Virtuoso allows the use of both XSLT and XQuery to suit the requirements of your

application. XQuery and XSLT are functionally equivalent - programmers will be able

to garner desirable results with either language.

XQuery is, of course, optimized for queries, whereas XSLT is optimized for reporting

and transformation. If a task requires database retrieval, XQuery is the natural choice

as a SQL-like declarative dialect.

XSLT is the better choice to copy or transform a presently instantiated document

within the context of an application data space. Extracting a data subset from a

document may be accomplished with either XSLT or XQuery.

For those familiar with SQL, XQuery may be somewhat easier to learn, in a subjective

sense, as XQuery was designed to manipulate highly structured data.

XQuery or XSLT' This issue boils down to the programmer's perspective -how is the

data stored, how does one wish to report or transform' Virtuoso provides both XSLT

and XQuery; pick your poison.

XQuery in Virtuoso

XQuery can also be used to retrieve elements and fragments from XML documents

stored in the Virtuoso WebDAV virtual file system, from relational data in Virtuoso's

core DBMS system, or from other databases attached via the VDB.

Virtuoso's XQuery benefits shine when a need arises to compose queries in order to

return XML from an attached database sans XQuery support, or from a multi-vendor

DBMS hell farm that does not support XML as a data type.

Becoming Familiar with XQuery
W3C defines XQuery as a language meant to "...provide flexible query facilities to

extract data from real and virtual documents on the World Wide Web." XQuery is

simply another XML transformation language, like XSLT with a dash of SQL style.

Both XSLT and XQuery use the same XPATH 2.0 inner syntax for matching and

transforming XML.

One may also wonder how XQuery is related to SQL, however loosely.

SQL, a declarative language, is optimized for relational queries, and generating

tabular results. Vendor specific renderings of SQL have been type extended to

support the generation of XML, encompassing some of capabilities of XQuery. A good

example of the use of XQuery is the formation of hierarchical expressions, not an

easy SQL task.

XQuery is semi-programmatic;. The query engine allows fine-grained control over

document processing at the behest of the programmer. XQuery is therefore ideal for

programmers transitioning from structured programming languages.

Common XQuery Usage Scenarios

Document Querying

XQuery's mission as defined by the W3C is XML document querying. Such a

world-view of XQuery is provincial, when considering XQuery's capabilities beyond the

realm of documents.

SQL implementations have always been organically suited to their underlying storage

or retrieval systems. XQuery has a more limited native scope, but the loyal IT tools

community is creative, and continues to work around limitations.

Native XML Databases

XQuery's first adoption was in XML Databases, a common milieu for XQuery.

Relational database vendors now advocate XML hybrid data types, and XQuery will

become a coin of the realm for XML and relational data queries.

Querying of Relational Data

Early XML support in relational databases consisted of simple row set serialization,

amply adequate for queries without the need for hierarchical results. As XML's primary

value is to represent hierarchical elements and attributes as self-describing

information., this would not endure.

The SQL/XML (SQLX) specification is implemented as extended SQL functions, and

affords fine-grained control of XML creation from your relational store. In either case,

further processing may be required, and XQuery can fill that role.

Message Transformation

Message transformation is XQuery's tour de force. Making dissimilar systems

interoperate is a full time job for the IT department; XQuery may attain popularity by

helping with the heavy lifting of Integration tasks

It's de'ja' vu all over again [1]. Much like the era of terminal-based applications making

the conversion to web-based services, today's two-tier applications are bound to

relational data trapped in crystallized applications. Far too expensive for wholesale

overhaul, the remake of these applications to web services will require supreme

flexibility to translate XML to and from relational data services and storage systems.

Xquery stands in as the refit mechanic's tool for information mutability until

contemporary applications catch up by replacing columnar data with native XML

constructs.XQuery is the engine of choice for conversion to formats better tolerated by

web services clients.

The Capabilities of XQuery
The following is a list of some of the high-level capabilities of XQuery.

Path Expressions

Element Construction

FLWR Expressions

Operators and Functions

Conditional Expressions

Path Expressions

XPath is the core selection model that drives XQuery. XPath includes full-depth

searches, navigational predicates, alternative axes, functions, and the ability to

address more than one node at a time with a single path expression. The selfsame

XPath V2.0 is used by XSLT in a different language construct.

Here is an example of a simple XPath expression:

/Emps/Emp[FirstName="Nancy" and LastName="Davolio"]

This query instructs the XPath processor to navigate to the 'Emps' element of the

working context, in this case, the root element of the document, and select all 'Emp'

child elements matching the predicate criteria included within square brackets. This

predicate requires that the first 'FirstName' element of the 'Emp' element be equal to

'Nancy', and the first 'LastName' element of the 'Emp' element equals 'Davolio'.

Note "the first 'FirstName' element";.an important point regarding XPath processing is

the exposure of nodes as sequences. Certain comparison constructs, such as the '='

operator, act solely on the first node of a sequence. In the case of an 'Emp' element

with two 'FirstName' elements, the XPath expression would fail to return the expected

element, though logically it should. If the order of 'Mary' and 'Nancy' elements were

reversed, the query would return that 'Emp' element. Work around this problem by

placing the tests values in predicates of their own:

/Emps/Emp[FirstName[text()="Nancy"] and LastName[text()="Davolio"]]

The previous query introduces the concept of XPath function calls. XPath functions

are executed in the context of the current node. In this case, the text() function is

called repeatedly for each element in the context of the 'FirstName' and 'LastName'

sequences; only those elements returning text() function as queried value results are

returned from a given sequence.

To query a document for 'LastName' elements, ignoring the 'Emp' element context,

one would issue this path statement:

//LastName

This traverses the depth of the document searching for 'LastName', returning each

element as part of a sequence. Predicates can also be applied in order to query

documents with deep hierarchies.

Element Construction

The ability to query a document and return element nodes is no guarantee of a

well-formed document result. XQuery allows output of XML elements and attributes as

a well-formed document, using XML or computed syntax.

An example of Element construction:

<LastNames>

{

document("EmployeeOrders.xml")//LastName

}

</LastNames>

This uses the XML-syntax of construction. It could also be expressed using the

computed syntax:

element LastNames {

 document("EmployeeOrders.xml")//LastName

}

The computed syntax allows creation of data types within the XQuery model, such as

timestamps, strings, floating point numbers, and integers.[2]

FLWR Expressions

The power of XQuery exists in its FLWR expressions.

FLWR expressions allow XQuery to iterate a sequence of nodes containing

conditional operations.. FLWR is the abbreviation of the syntactic operator constructs

within an expression: For, Let, Where, and Return. To better understand these

keywords, think of it this way:

For each variable that I assign from this expression

Let these values equal the result of these expressions

Where this expression results in a boolean true result

Return this node

The following is a simple XQuery example demonstrating For, Where, and Return

keywords. Notice that the keywords may be omitted from the expression depending

on the query-processing context:

<LastNames>

{

 for $i in document("EmployeeOrders.xml")//LastName

 where starts-with($i/text(), "Da")

 return

 <ln>

 {

 $i/text()

 }

 </ln>

}

</LastNames>

This example selects the 'LastName' elements from EmployeeOrders document. For

each node in the sequence, test to see that the text() function returns a value that

starts with ('Da'). If so, return the constructed element 'ln', placing in it only the textual

value of each node, rather than the entire element. Another way to express this query

using a Let keyword follows:

let $lastnames := document("EmployeeOrders.xml")//LastName

return

 <LastNames>

 {

 for $i in $lastnames

 where starts-with($i/text(), "Da")

 return

 <ln>

 {

 $i/text()

 }

 </ln>

 }

 </LastNames>

Operators and Functions

Operators and functions are an important part of the conditional processing of node

sequences, and the dynamic construction of XML content in XQuery. Comparison

operators and functions can be used to filter processed node sequences. String and

numeric manipulation methods can be used to alter element values and perform

numeric aggregation on sequences of nodes.

The most common operators in XQuery are:

Arithmetic

Operator

Description

+ Add the value of the first expression to the second.

- Subtract the value of the second expression from the first.

* Multiple the value of the first expression by the second.

div Divide the value of the first expression by the second.

idiv Divide the value of the first expression by the second, returning only

the integral portion of the result.

mod Divide the value of the first expression by the second, returning only

the remainder of the result.

Value

Comparison

Description

eq Returns true if the first scalar expression is equal to the second.

ge Returns true if the first scalar expression is greater than or equal to

the second.

gt Returns true if the first scalar expression is greater than the second.

le Returns true if the first scalar expression is less than or equal to the

second.

lt Returns true if the first scalar expression is less than the second.

ne Returns true if the first scalar expression is not equal to the second.

General

Comparison

Description

= Returns true if the first scalar expression is equal to the second.

>= Returns true if the first scalar expression is greater than or equal to

the second.

> Returns true if the first scalar expression is greater than the second.

<= Returns true if the first scalar expression is less than or equal to the

second.

< Returns true if the first scalar expression is less than the second.

!= Returns true if the first scalar expression is not equal to the second.

Logical Operator Description

or Returns true if either the first or the second expression are true.

and Returns true only if the first and the second expression are true.

Notice that Value Comparisons perform similarly to General Comparisons, with a

subtle difference. Value Comparisons will operate on two operands or sequences

representing a single node. If a sequence with more than one node is passed to a

Value Comparison, an exception will be flagged. General Comparisons performs

implicit conversions depending on the operation, such as using only the first node in

the sequence.

More common functions:

Function Description

concat Concatenates two or more character strings.

starts-with Indicates whether the value of one string begins with the characters of the

value of another string.

ends-with Indicates whether the value of one string ends with the characters of the

value of another string.

contains Indicates whether the value of one string contains the characters of the

value of another string. A collation may optionally be specified.

substring Returns a string located at a specified place in the value of a string.

count Returns the number of items in the sequence.

avg Returns the average of a sequence of numbers.

max Returns the object with maximum value from a collection of comparable

objects.

min Returns the object with minimum value from a collection of comparable

objects.

sum Returns the sum of a sequence of numbers.

current-

dateTime

Returns the current dateTime.

current-date Returns the current date.

current-time Returns the current time.

Conditional Expressions

XQuery allows the return of one of two values depending on the result of an

expression. This behavior can be chained with nested tests as well. The syntax to

perform these actions is found in the 'if' operator.

let $doc := document("EmployeeOrders.xml")//Emp

return

 <Emps>

 {

 for $i in $doc

 return

 <Emp>

 {

 $i/FirstName,

 if ($i/LastName/text() = "Davolio") then

 <LastName davolio="true" >

 {

 $i/LastName/text()

 }

 </LastName>

 else

 <LastName>

 {

 $i/LastName/text()

 }

 </LastName>

 }

 </Emp>

 }

 </Emps>

This query outputs the 'FirstName' and 'LastName' elements of each 'Emp' element

found in the document, adding a special attribute called 'davolio' to the resulting

'LastName' elements if the source value is equal to 'Davolio'.

The Virtuoso Demo Database

For this demonstration, use the Virtuoso demo database included in the standard

installation.

Type the following URL into your web browser:

http://localhost:8890/admin/

This will prompt for the DBA user name and password. After correctly entering

username and password, you will be presented with the Virtuoso Administrator

interface.

Issuing Queries in Virtuoso Administrator using XQuery

In Conductor, Virtuosos System Administrator, navigate to the XML Service tab, select

the XQuery sub tab and then the XQuery Basic option of the XQuery Wizard interface.

To test if all is well, enter the XQuery Context mode for the DAV resource and then

type "/DAV/xmlsql/EmployeeOrders.xml" as the Path. Enter the NEXT button and

enter in the example document in to this query window. After that, cut and paste the

"Conditional Expressions" example from this document into the query editing area and

then click the "Execute" button to check the query The result should look like this:

<Emps>

<Emp>

 <FirstName>Nancy</FirstName>

 <LastName davolio="true">Davolio </LastName>

</Emp>

<Emp>

 <FirstName>Andrew</FirstName>

 <LastName>Fuller </LastName>

</Emp>

<Emp>

 <FirstName>Janet</FirstName>

 <LastName>Leverling </LastName>

</Emp>

<Emp>

 <FirstName>Margaret</FirstName>

 <LastName>Peacock </LastName>

</Emp>

<Emp>

 <FirstName>Steven</FirstName>

 <LastName>Buchanan </LastName>

</Emp>

<Emp>

 <FirstName>Michael</FirstName>

 <LastName>Suyama </LastName>

</Emp>

<Emp>

 <FirstName>Robert</FirstName>

 <LastName>King </LastName>

</Emp>

<Emp>

 <FirstName>Laura</FirstName>

 <LastName>Callahan </LastName>

</Emp>

<Emp>

 <FirstName>Anne</FirstName>

 <LastName>Dodsworth </LastName>

</Emp>

</Emps>

Hit the NEXT button in the XQuery wizard to save. You can then continue cutting,

pasting, and executing the other examples. Try to make modifications to the queries,

such as renaming the elements that are produced, or promoting all of the elements to

attributes. Virtuoso will indicate syntax errors, and this is good way to learn.

Saving Queries as HTTP Resources

Queries used for periodic generation of XML results may be saved asa text file and

used via Virtuoso's administrative interface, but there are better alternatives for

repetitive use of saved queries. In order to create an XQuery that is available by web

browser, simply click the 'Save' button instead of the 'Execute' button on the XQuery

interface.

XQueries may be stored in Virtuoso's WebDAV virtual directory. To access XML query

results, point your browser or XML tool to the WebDAV URI storing the saved XQuery.

Virtuoso may be configured to generate this document on demand, or periodically

re-generate the document.

The screen will look like this:

Set the following fields to their respective values:

Field Value

File of XML template /DAV/xqdemo/Davolios.xml

Replace Existing Resource Selected

XML Template Checked (Davolios example)

Permissions Owner: rwx - Group: r - Other: r

Set the 'Query' field to the following:

for $i in document("EmployeeOrders.xml")//Emp

return

 <Emp>

 {

 $i/FirstName,

 if ($i/LastName/text() = "Davolio") then

 <LastName davolio="true" >

 {

 $i/LastName/text()

 }

 </LastName>

 else

 <LastName>

 {

 $i/LastName/text()

 }

 </LastName>

 }

 </Emp>

Notice that this query omits the root-level 'Emps' element. Virtuoso's XQuery template

system will automatically generate a root element, and in this case, we've specified

that it should generate a root element named 'Emps'.

Click the 'Save' button. There will be no indication that the query has been saved,

however, if you browse Virtuoso's WebDAV repository, you will find a document called

'Davolios.xml' under the /DAV/xqdemo/ collection.

You may now browse to the following URL to view the query results:

http://localhost:8890/DAV/xqdemo/Davolios.xml

Virtuoso WebDAV requires user authentication to browse stored queries. This is a

prudent security practice, but there may be situations that call for a query to be made

publicly available.

Creating an open virtual directory as part of Virtuoso's default HTTP server is a simple

task.

Navigate to the 'HTTP Hosts & Directories' sub-tab under the WebDAV & HTTP.In the

'HTTP Hosts & Directories' screen, expand the directories left of the default port and

Default Web Site. by clicking on the folder icon. Once the directories are expanded

click on the 'Add New Directory' Link at the top of the directory to create a new

mapping.

The screen will then look like this:

In the Virtual Directory Wizard, select 'None' for the Virtual Directory Type and hit the

NEXT button. In the next screen in the wizard, set the following fields to their

respective values, and click the 'Save Changes' button.

Field Value

Logical Path /xquery-test

WebDAV source Checked

Physical Path or URL /DAV/xqdemo/

Browse to the following URL to view the query results:

http://localhost:8890/xquery-test/Davolios.xml

This URL is open whereas the WebDAV URL required authentication.

Virtuoso-Specific Extensions
The official XQuery specification is limited to an agnostic feature implementation.

XQuery makes no assumptions regarding context, environment, or supporting

infrastructure. Vendors commonly extend standards-based languages with additional

system specific functions.

Learn More

Virtuoso Documentation

Virtuoso Tutorials

[1] Yogi Berra

[2] Note: The computed syntax is not yet supported by Virtuoso's XQuery

implementation.

