
API Exposure for Integration

Executive Summary
The data integration milestone has passed successfully by implementing the Virtuoso

Virtual Database. With our capital line-of-business systems running normally, and with

local access to their relational engines intact, we have created the all-important unified

schema through the Virtuoso VDB. That's progress.

The next order of business is to align application functions via Web Services

exposure. Web Services are the accepted way of creating and combining composite

services from mixed bags of applications, and is a viable and standard-based method

for integrating IT operations.

Post-merger data models unified via the Virtuoso VDB grants an opportunity not

commonly found in competing data integration solutions the ability to expose data,

SQL stored procedures, and application code, via the ubiquitous URI using Web

Services. This exposure of functions through a standardized medium provides a

workable, incremental method of integrating IT systems.

Laying the Foundations for API Exposure
Knowledge of your data storage systems is a minimum prerequisite for merger

integration using web services API exposure. Virtuoso provides a unified interface for

external RDBMS connections, and a mechanism to inspect the stored procedures that

make up the lion-share of capital LOB functions.

Virtually all contemporary applications, custom and ready-made, sit atop a popular

relational database management system. This fact is emphasized because most of

the data handling routines exposed via web services compliant URI's are enshrined in

SQL stored procedures of these various databases.

Foundational LOB applications provide a standard programming API used for calling

specific functions. Third parties also sell language specific connectors for Java and

other environments.

The salient point of this practicum is that capital applications enshrine logic and data

handling routines as SQL stored procedures within the underlying DBMS. Finally, with

this knowledge in hand, we can reveal:

'SQL stored procedure attached via Virtuoso's Virtual Database engine, regardless of

which application it serves (a custom application grown in-house or a $500k+ SAP

system), may be exposed as a web service end-point.'

Using Virtuoso Universal Server, any capital line application function can be made

available via a URI. Let's break it down by family:

Capital Line applications may belong to one of several species:

Off-the-Shelf: The high-end of these applications (SAP, PeopleSoft) all sit

atop a big three database, such as IBM DB2, Oracle, or MS SQL Server. The

mid-end accounting systems or vertical industry applications may embed

storage. For those sitting on the broad shoulders of a major database, Web

Services exposure will prove to be straightforward. For the more obscure

verticals, thankfully, they may also provide API connections; if not, the data file

can be broken open with XSLT[1], or XQuery, and converted to SQL data.

An interesting instance is mid-end accounting programs, QuickBooks being a

good example. This mega hit application started as a small business

accounting package with no point of entry for customization, yet has grown to

rival enterprise accounting systems - with the inclusion of a complete API.

1.

Homegrown: A great deal of applications are custom made from the ground

up. The majority of custom applications are two-tier; databases sit beneath an

application layer provided by a me'lange of programming environments. Web

Services takes the stage as a fairly easy path to integration, as the core of the

application is likely composed of SQL stored procedures.

Business logic bound in programming language runtimes may also be hosted

and invoked within the Virtuoso Environment, while the presentation layer may

eventually be extended or dispensed with in favor of a Web Based application

interface. With Virtuoso, there is no need to make any rash decisions; URI

Web Service invocations read and update the underlying database, and the

legacy application can be held over during the conversion.

2.

Hybrid: Larger enterprises will fall into the hybrid category. Complex business

logic may span Microsoft Tools (SQL Server), languages (.net and C#), and

possibly encompass a Sun Solaris implementation (Oracle on Solaris).

The same rules apply to the DBMS - all SQL procedural code is fair game for

exposing via a web services URI invocation. The application logic may, in the

case of large hybrid systems, need inspection via a Java reflection[2] API, or

code listings for early-bound language families. Ultimately, object languages

3.

and frameworks of the late-bound variety (J2EE, C#) are easier to factor into

web services applications than older compiled binaries.

This exposition of the foregoing system flavors sets the stage for the task at hand,

exposing application functions in the form of : (system1.payrollrecordadd.com)[3]. Lets

jump in.

End-Points, SOAP, and Virtual Directories
The following case of an IT driven mergers shares a common thread with an internal

systems integration - each of the partner organizations/internal systems have in-place

methods and applications for dealing with daily operations. An excellent example is

adding a Client Record.

In our most onerous case, a systems hybrid of a commercial ERP system and a

custom inventory application built atop a DBMS, we envision a case to expose two

AddClientRecord API functions as a Web Service. As you might surmise from our

introduction, yes, the ERP system was inherited from Company 'A', and the custom

Inventory system from Company 'B'.

Three concepts define the composition of an executable web service URI:

Definition of a virtual

Directory to host the service and connect the URI to the service. Think of the

virtual directory as part of the web server - a home for one SOAP end-point.

1.

Composition of the service by selecting either a SQL stored procedure within

the Virtuoso core DBMS engine, or an attached SQL procedure via the VDB.

Alternatively, the virtual directory may host run-time code.

2.

Defining the end-point as a SOAP service, with appropriate SQL account

security settings.

3.

A SOAP end point is created using Virtuoso's virtual directory- essentially a web

server executable services function. We can do this via the administrative interface or

programmatically via Virtuoso's Procedure Language.

The Simple Object Access Protocol (SOAP) is an XML-based application layer for

information exchange, nothing more. SOAP defines the 'traveling' format for your

URI-based messages. The most common way to transport SOAP messages is

HTTPS.

For those web services calls between a known caller and server - in this merger case,

for instance, we may rely on the apriori knowledge of the function variables or

prototypes exposed within the SOAP message body. Having access to the to the SQL

objects and program source documentation may be all we need to invoke these URI

end-points and integrate our systems accordingly.

For web services targeted for invocation by external callers, WSDL, the Web Services

Description Language, provides a method of conveying SOAP calling and return data

parameters. Virtuoso automatically generates WSDL for SOAP services, and one may

wish to use this as standard procedure. In a following article, we will examine the

creation and binding of multiple SOAP service invocations with WSDL.

Learn More
Virtuoso Documentation
Virtuoso Tutorials

[1] Virtuoso Supports a complete suite of XML transformation services

[2] Inspection, Reflection, and Introspection all refer variously to methods of revealing

code and data structures in Object Oriented Programs and languages, such as Java

and .Net

[3] For a detailed explanation of the Web Services Nomenclature, see the excellent

white paper, 'Virtuoso Web Services'.

